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Abstract

Genetic endowments are fixed at conception and matter for the educational attainment of
individuals. Do investments in schooling environments mitigate or magnify the outcomes
of this genetic lottery? We analyze the interdependent associations of genetic endowments,
teacher quality and teacher quantity with educational attainment in the United States. Our
results suggest that higher-quality teachers are substitutes for genetic endowments: a 1 SD
increase in teacher quality reduces the positive association between educational attainment
and a 1 SD increase in the relevant polygenic score by 20%. This increase is underpinned
by relative gains in health, language ability, patience, and risk aversion.
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1 INTRODUCTION

Education is a key determinant of life outcomes, both for individuals and for societies as a
whole (Acemoglu and Autor, 2011; Hanushek and Woessmann, 2008; Krueger and Lindahl,
2001). Hence, improving equity and efficiency in education systems is a central policy goal
in modern societies. To achieve such improvements, it is important to understand the role
of genetic endowments in educational attainment: on the one hand, genetic endowments are
strong predictors of education; in heritability studies they account for 40% of the variation in
years of education (Branigan et al., 2013; Lee et al., 2018). On the other hand, the importance of
genetic endowments varies with social environments like families, neighborhoods, and schools
(Cesarini and Visscher, 2017; Koellinger and Harden, 2018). Therefore, the link between genetic
endowments and life outcomes may be modified by policy interventions. This observation
raises important questions: can school reforms moderate the link between genetic endowments
and educational outcomes? If so, which domains of the school environment are particularly
effective in doing so? Answers to these questions are of utmost importance to address equity
and efficiency concerns related to current education systems. Despite this importance, current
evidence is scant.

In this paper, we study the interaction of genetic endowments and school environments in the
production of educational attainment. We focus on two dimensions of school environments
that have been studied extensively in the literature on education economics: teacher quality
and class size (Angrist and Lavy, 1999; Angrist et al., 2019; Chetty et al., 2014a,b; Fredriksson
et al., 2013; Jackson, 2019; Leuven and Løkken, 2020; Rivkin et al., 2005; Rockoff, 2004). Im-
portantly, these dimensions can be directly influenced by policy interventions that apply to all
children and do not presuppose any form of genetic screening (Martschenko et al., 2019).

We use data from the National Longitudinal Study of Adolescent to Adult Health (Add Health)
to study the interaction of genetic endowments and school environments in a between-family
design. Add Health is a 5-wave panel study that follows a representative sample of US high
school students from 1994/95 to the present. To the best of our knowledge, Add Health is the
only (publicly available) data set that offers detailed information on schooling environments
from both survey and administrative sources for a genotyped sample of reasonable size.

To measure genetic endowments, we leverage recent advances in molecular biology and use a
polygenic score for educational attainment (PGSEA, Dudbridge, 2013; Lee et al., 2018). PGSEA is
an individual measure of the genetic propensity to attain education.1 It offers important ad-
vantages over traditional proxies for "innate ability", such as student test scores and IQ tests
(Brinch and Galloway, 2012; Hanushek and Woessmann, 2008, 2012; Heckman et al., 2010).

1In addition, PGSEA has been shown to be highly predictive of a number of life outcomes that are closely related
to educational attainment. These outcomes include earnings, wealth and (non-)cognitive skills (Barth et al., 2020;
Buser et al., 2021a; Demange et al., 2021; Houmark et al., 2020; Lee et al., 2018; Muslimova et al., 2020; Papageorge
and Thom, 2020).
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More specifically, it is a fine-grained DNA-based measure of innate ability that is fixed at con-
ception and cannot be modified by environmental interventions thereafter. To measure the
quality of school environments, we use information from headmaster surveys and administra-
tive data sources such as the Common Core of Data and conduct a principal component anal-
ysis of the following school-level characteristics: teacher experience, teacher turnover, teacher
education, teacher diversity, as well as class sizes and student-teacher ratios. From this analy-
sis, we extract two factors that are indicative of the quality of teachers (IQuality) and the quantity
of teachers relative to the number of students (IQuantity), respectively.

Causal identification of gene-environment interactions is challenging. In this study, we rely on
a between-family comparison in which we control for an extensive set of predetermined family
background characteristics. Between-family designs identify causal effects under strong iden-
tifying assumptions. We discuss these identification assumptions in detail and provide tests
for their satisfaction. First, genetic endowments are correlated with other family characteristics
that co-determine educational attainment. Therefore, even conditional on observables our pa-
rameters of interest may be confounded by gene-environment correlation or genetic nurture effects.
In response, we show that the relevant point estimates from the between-family design can be
replicated in a smaller sibling sample that allows us to control for genetic nurture by including
family fixed effects. Second, school characteristics may be correlated with other family charac-
teristics that co-determine educational attainment. Therefore, even conditional on observables
our parameters of interest may be confounded by selection effects. Thus, we calculate differ-
ent summary statistics to quantify the potential magnitude of confounding by unobservables
(Cinelli and Hazlett, 2020; Oster, 2019). The results suggest that any residual confounding influ-
ence is small and unlikely to overturn our main results. Lastly, gene-environment interactions
can only be identified if genetic endowments and the environmental variable of interest are
distributed independently of each other. In response, we show that we cannot reject the equal-
ity of PGSEA distributions in various school environments. In addition to extensive tests for the
relevant identifying assumptions, we note that our results withstand a series of empirical tests
for competing mechanisms, that we discuss in detail below.

Our results can be summarized as follows. First, genetic endowments and teacher quality are
highly predictive of years of education: a one-standard-deviation increase in PGSEA (teacher
quality) increases educational attainment by ≈ 0.37 (0.22) years.2 Second, genetic endow-
ments and teacher quality act as substitutes in the production of educational attainment: a
one-standard-deviation increase in teacher quality reduces the positive association between
educational attainment and PGSEA by ≈ 20%. This result implies that improvements in teacher
quality may reduce the genetic gradient in educational attainment. Furthermore, it suggests
that teacher quality may offset the effects of family socio-economic status—an environmen-
tal characteristic that tends to magnify the genetic gradient in educational attainment (Papa-

2These increases correspond to 17% (10%) of a standard deviation.
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george and Thom, 2020; Ronda et al., forthcoming).3 Third, unlike teacher quality, teacher
quantity is not associated with educational attainment—a null result that does not vary across
the PGSEA distribution.

We perform a series of robustness checks to evaluate whether our results are conflated by com-
peting mechanisms. We first show that our measures for teacher quality and teacher quantity
do not pick up the effects of other school characteristics that may correlate with student out-
comes. These characteristics comprise school peer characteristics, school-level policies such as
sanctions for academic misconduct, and overall school value-added. Next, we demonstrate
that our results are not driven by gene-environment interactions that reflect family instead of
school environments. To that end, we run a models that controls for all possible interactions
between PGSEA, IQuality, IQuantity, and a broad set of parental background characteristics (Keller,
2014).

We also analyze the mechanisms underlying the substitutability of genetic endowments and
teacher quality. Educational attainment summarizes information from various educational
stages, with each stage requiring a different mix of skills (Cunha et al., 2006, 2010). There-
fore, we repeat our analysis by replacing total educational attainment with binary variables
indicating whether respondents have obtained a given educational degree. We find a sub-
stitutability of genetic endowments and teacher quality in the production of high school and
college degrees, while there is no substitutability for post-graduate degrees. These results are
in notable contrast to Papageorge and Thom (2020), who find a growing complementarity of
parental background characteristics and genetic endowments as individuals progress through
the educational system. To uncover which type of skills drives our results, we analyze the
associations of PGSEA and teacher quality with a range of intermediate outcomes, including
subjective and objective health, cognitive skills, economic preferences, and personality mea-
sures. We find that the substitutability of genetic endowments and teacher quality with respect
to subjective health, verbal intelligence, risk-aversion, and patience underpins our main result.

Our study contributes to three strands of literature. First, we contribute to the literature on
gene-environment interactions. Existing evidence shows that the association between socio-
economic outcomes and genetic endowments varies with parental socio-economic status (Houmark
et al., 2020; Papageorge and Thom, 2020; Ronda et al., forthcoming). Evidence on gene-environment
interactions regarding school environments is more sparse. Barcellos et al. (2021) use a compul-
sory schooling reform to show that returns to schooling are lower for genetically advantaged
students. However, they focus on the length of schooling and not the quality of school envi-
ronments. Trejo et al. (2018) show a stronger genetic gradient in schools with better educated
parents. However, with endogenous sorting, the composition of schools is a difficult target for
policy intervention. Therefore, we focus on margins that can be directly influenced by policy-
makers: the quality and quantity of teachers.

3See also our replication of their findings in section 5.
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Second, we contribute to the literature on teacher quality. The positive effects of teacher qual-
ity on short- and long-term outcomes of students are well-documented (Chetty et al., 2014a,b;
Jackson, 2019; Rivkin et al., 2005; Rockoff, 2004). However, the literature is far less conclusive
regarding the equalizing effects of teacher quality on different student subgroups. For example,
Aaronson et al. (2007) find that low-achieving students benefit more from high-quality teach-
ers. In contrast, Chetty et al. (2014b) show that students from minority and low-income back-
grounds benefit less. While previous studies have evaluated heterogeneities along dimensions
that conflate genetic and social factors, we are able to measure the genetic predisposition for
educational success as fixed at conception. We show that the positive effects of higher-quality
teachers on educational attainment are concentrated among students with lower genetic en-
dowments.

Third, we contribute to the literature on class size. Here, the average effects on students’ out-
comes are subject to academic debate. On the one hand, experimental studies on class size
reductions tend to show positive effects on student achievement (Chetty et al., 2011; Krueger,
1999). On the other hand, quasi-experimental analyses exploiting maximum class-size rules
tend to find mixed results, even when analyzing similar settings (Angrist and Lavy, 1999; An-
grist et al., 2019; Fredriksson et al., 2013; Leuven and Løkken, 2020). The equalizing effects of
class-size reductions are also controversial. For example, Krueger (1999) shows that class size
reductions are more beneficial to students from a minority and low-income background. In
contrast, Fredriksson et al. (2013) document that wage increases following a reduction in class
size are more pronounced for students from high income backgrounds. Our study is the first
to evaluate heterogeneities along the genetic dimension. We show that teacher quantity is not
associated with gains in educational attainment irrespective of genetic endowment.

Our results are policy relevant. First, we show that higher teacher quality promotes educa-
tional attainment in the lower tail of the PGSEA distribution, but does not compromise achieve-
ment in the upper tail. This finding suggests that policymakers do not face an equity-efficiency
trade-off when investing into teacher quality. Second, in contrast to teacher quality, we find
no effect of teacher quantity on the educational outcomes of students, regardless of genetic
endowments. This finding suggests that policymakers who are willing to address the equity
and efficiency concerns related to genetic endowments do not face a trade-off between invest-
ments into teacher quality and teacher quantity. The latter finding is economically relevant as
teacher salaries and employee benefits are by far the largest cost factor in the US school system,
accounting for about half of US public primary and secondary schools expenditures (Figure
B.1).

The remainder of this paper is structured as follows. In section 2, we provide an introduction to
the measurement of genetic endowments. In section 3, we detail our empirical strategy. After
introducing our data sources in section 4, we present results in section 5. Section 6 concludes
the paper.
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2 MEASURING GENETIC ENDOWMENT

The “First Law of Behavior Genetics” states that all human behavioral traits are heritable
(Turkheimer, 2000). That is, genetic endowments explain the expression of each trait, at least
to some extent. The empirical challenge is to identify the specific sequences in the genome
that are related to the traits of interest.4 Recent advances in molecular genetics have enabled
a novel method of genetic discovery: genome-wide association studies (GWAS). GWAS ex-
ploit the most common type of genetic variation between humans, so-called single-nucleotide
polymorphisms (SNP). SNPs occur when a single nucleotide—the basic building block of DNA
molecules—differs at a specific position in the genome. Humans have around ten million SNPs.
GWAS estimate separate linear regressions that relate a SNP of individual i at genome location
j to an outcome of interest y:

yi = ψ
y
j SNPij + δCi + ε i. (1)

SNPij ∈ {0, 1, 2} is a count variable and indicates the number of minor alleles that individual i
possesses at location j. Minor alleles are the less frequent genetic variation within a population.
As humans inherit one of each chromosome from each parent, they possess either zero, one,
or two minor alleles at each location j. Ci is a vector of control variables to filter out spurious
correlations due to non-biological differences across population groups. A particular SNP co-
efficient ψ

y
j is considered genome-wide significant if the null hypothesis of non-association is

rejected at a level of p < 5 × 10−8 (Chanock et al., 2007). The p-value is deliberately set low to
account for multiple hypothesis testing.

The association of a single SNP with y is minuscule, but jointly they can explain a substantial
share of the observed outcome differences between individuals (Lee et al., 2018). In particular,
the estimated SNP coefficients can be used to construct polygenic scores (PGS). A PGS is a
scalar measure of an individual’s genetic pre-disposition to an outcome of interest relative to
the population. Formally, individual i’s PGS for outcome y, PGSy

i , is constructed by linear
aggregation of all SNPij using ψ

y
j as weighting factors:

PGSy
i = ∑

j
ψ̂

y
j SNPij, (2)

where ψ̂
y
j is the estimated SNP coefficient from equation (1). To avoid overfitting, equation (1)

is estimated in a discovery sample, whereas the PGS is constructed in a hold-out sample (Wray
et al., 2014).

The predictive power of a PGS is largely determined by two factors: the heritability of the
outcome, which serves as an upper bound of the variance the PGS can explain, and the size

4Human genetic information is stored in 23 chromosome pairs that consist of deoxyribonucleic acid (DNA)
molecules. These chromosomes, in turn, contain 20,000 to 25,000 genes—specific DNA sequences that provide
instructions for building proteins. More than 99% of the sequences are identical in all humans.
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of the discovery sample (Dudbridge, 2013). All else equal, the greater the heritability of the
outcome, or the larger the discovery sample used to estimate the aggregation weights ψ̂

y
j , the

higher the predictive accuracy of the PGS. For example, the heritability of educational attain-
ment is around 40% (Branigan et al., 2013). The PGS for educational attainment constructed by
Lee et al. (2018) is based on information from 1.1 million individuals and explains 12.7% of the
variance in educational attainment.

The interpretation of PGS is not trivial. First, PGS are not purely measures of biological influ-
ence. In particular, GWAS coefficients may capture environmental factors such as population
stratification across geographic regions (Abdellaoui et al., 2019). To this address this concern,
we follow standard practice and always control for the first 20 principal components of the
genetic data in our empirical analysis.5 Second, the explanatory power of PGS depends on the
context of its application. If a PGS is applied in one context, while the underlying GWAS was
estimated in a completely different context, the predictive power of the PGS will be attenuated.
In our context, this concern is limited: we apply PGS to a sample from the United States, while
the underlying GWAS predominantly draws on samples from other industrialized countries
with comparable education systems. Third, PGS are noisy measures of genetic endowments.
Due to current GWAS sample sizes, they do not capture all of the genetic variation relevant
to the outcome of interest. As a direct consequence, alternative PGS are still predictive of ed-
ucational attainment over and above PGSEA. However, in Appendix Table A.4, we show that
PGSEA has significantly better predictive power than any plausible alternative PGS. Therefore,
it is the best among other noisy measures for genetic endowments.

PGS are now available for a variety of outcomes. These include, for example, the body mass
index and height (Yengo et al., 2018), attention deficit hyperactivity disorder (Demontis et al.,
2019), major depressive disorder (Howard et al., 2019), intelligence (Savage et al., 2018), smok-
ing (Liu et al., 2019), and sleep duration (Jansen et al., 2019). For our analysis, we rely on the
PGS for educational attainment from Lee et al. (2018).

3 EMPIRICAL STRATEGY

3.1 Empirical Model

Consider a model in which the skills θ of child i at age a are determined by prior skill levels
θia−1, parental investments IP

ia, school investments IS
ia, and genetic endowments Gi.6 There are

5The first principal components of the full matrix of genetic data capture most of the geographic variation in
allele frequencies (see Mills et al., 2020, chapter 9.4, for a discussion). Therefore, they control for the geographic
correlation between allele frequencies and socio-economic status.

6For the sake of parsimony, we abstract from other actors in the child development process, such as grandparents
or providers of early childhood education.
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three phases of skill accumulation:

θia =


fa(Gi) , for child age a = −1,

fa(IP
ia, θia−1, Gi) , for child age a = 0, ..., 5,

fa(IS
ia, IP

ia, θia−1, Gi) , for child age a = 6, ..., A.

(3)

The skills determined at conception are defined by genetic endowments only. For children
ages a = 0, ..., 5, i.e. in the period after conception and prior to attending school, parents are the
only source of investments into skills. Parental investments include health behaviors during
pregnancy, monetary investments such as buying toys or books, and time investments such as
playing with or reading to the child. For a = 6, ..., A, schools are an additional source of in-
vestments into skills. School-based investments include instruction by teachers or interactions
with peers.

Furthermore, assume the completed education Y to be a function of individual skills accumu-
lated by the end of childhood at age a = A:

Yi = g(θiA). (4)

By recursively substituting equations (3) and (4) across child ages a = 1, ..., A, we obtain a
model in which educational attainment is determined by initial genetic endowments, the his-
tory of family inputs, and the history of schooling inputs:

Yi = h(IS
iA, ..., IS

i6, IP
iA, ..., IP

i1, Gi). (5)

We are interested in the complementarity of schooling inputs and genetic endowments at a
particular child age a:

κ =
∂2h(IS

ia, IS
ia−1, ..., IS

i6, IP
ia, IP

ia−1, ..., IP
i1, Gi)

∂IS
ia∂Gi

. (6)

If κ < 0, genetic endowments and school investments at age a are substitutes in the production
of educational attainment, i.e. school investments are more productive for individuals with
comparatively disadvantageous genetic endowments. Reversely, if κ > 0, genetic endowments
and school investments at age a are complements in the production of educational attainment,
i.e. school investments are more productive for individuals with comparatively advantageous
genetic endowments.
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In this study, we focus on school investments during high school (14 ≤ a ≤ 18). We estimate
the complementarity parameter κ using a linear regression model with an interaction term:

Yi = αGi + βIS
ia + κ(Gi × IS

ia) + Xi(a)γ + ϵi, (7)

where Xi(a) denotes a vector of control variables to condition on the history of family and
schooling inputs up to age a = 14.

3.2 Identifying Assumptions

The parameter of interest κ is identified if the following conditions are met: (i) exogenous
variation in Gi, (ii) exogenous variation in IS

ia, and (iii) independent variation in Gi and IS
ia

(Almond and Mazumder, 2013; Johnson and Jackson, 2019; Nicoletti and Rabe, 2014). In the
following, we discuss each of these conditions, potential threats to their fulfillment, and how
we address them in the context of this paper.

(i) Exogenous variation in Gi. Genetic endowments are not exogenous to family characteris-
tics as the genetic endowments of children are drawn from the genetic pool of their biological
parents.7 As a consequence, Gi is a function of maternal and paternal genetic endowments
that may correlate with parental investments IP

i1, ..., IP
ia. Hence, when estimating equation (7), α

and κ may be confounded by gene-environment correlation or genetic nurture effects (Kong et al.,
2018). Genetic nurture can be controlled for either by estimating a sibling fixed effects model
that relies on within-family variation in Gi only (Houmark et al., 2020; Kweon et al., 2020;
Selzam et al., 2019); in a non-transmitted genes design, in which both maternal and paternal
genetic endowments are included in control vector Xi(a); or in an adoption design, in which
offspring are biologically unrelated to their parents.8 All approaches, however, are very data
demanding. For example, the sibling design requires a large sample of siblings with individual
measurements of Gi. Therefore, it can only be applied in a limited set of existing data sets.

In this study, we estimate a between-family model using an extensive set of pre-determined
family background characteristics to control for genetic nurture effects. This approach is stan-
dard in the literature and aims to approximate condition (i) while maximizing statistical power
to detect the sought-after gene-environment interaction (Domingue et al., 2020). Furthermore,
we formally assess the potential for residual confounding by genetic nurture effects by com-
paring the estimates of α from the between-family model to a sibling fixed effects model that
we estimate for a subset of our data (N = 525, Appendix Table A.2). Reassuringly, the point

7During meiosis the chromosomes of the father and the mother are re-combined to produce genetically dis-
tinct offspring. Therefore, singleton children of the same parents are never genetically identical to their siblings.
Furthermore, conditional on the parents’ genome, the offspring’s set of genes is randomly distributed.

8See Demange et al. (2020) for a detailed comparison of all three approaches.
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estimates are very close to each other. This result suggests that after conditioning on Xi(a),
residual genetic nurture is low and very unlikely to overturn our main findings.

(ii) Exogenous variation in IS
ia. School characteristics are not exogenous to family character-

istics as parents choose schools for their children (Altonji et al., 2005; Beuermann et al., forth-
coming). As a consequence, IS

ia is a function of family and child characteristics that may corre-
late with parental investments IP

i1, ..., IP
ia. Hence, in estimation model (7), β and κ may be con-

founded by selection effects (Altonji et al., 2005; Altonji and Mansfield, 2018; Biasi, forthcoming).
Selection into schools can be controlled in (quasi-)experimental settings, e.g. using variation
based on admission lotteries (Angrist et al., 2016; Cullen et al., 2006), or the geographic design
of catchment areas (Laliberté, 2021). Existing data sets that avail such variation, however, do
not contain sequenced DNA data needed to measure Gi at the individual level.

In this study, we use an extensive set of pre-determined family background characteristics to
control for selection into schools based on observables. Furthermore, we formally assess the
sensitivity of our results to residual confounding by calculating different summary statistics
for selection on unobservables (Cinelli and Hazlett, 2020; Oster, 2019). Reassuringly, these
summary statistics are consistent and point to low potential for selection on unobservables
(Appendix Table A.2 and Appendix Figure B.2). These results suggest that after conditioning
on Xi(a), residual selection into schools is low and very unlikely to overturn our main findings.

(iii) Independent variation in Gi and IS
ia. Conditions (i) and (ii) must be met in a way that

Gi and IS
ia are distributed independently of each other. Strong correlation between Gi and IS

ia

implies little variation in Gi at different levels of IS
ia and vice versa. As a consequence, there

may not be sufficient variation to identify α, β, and κ separately from each other.

To verify that condition (iii) is satisfied, we present empirical evidence that Gi and IS
ia are in-

deed distributed independently of each other. This conclusion holds both unconditionally and
conditional on Xi(a) (Figure 3 and Appendix Table A.3).

In summary: in an ideal setting, one would estimate the complementarity parameter κ by com-
bining a sibling fixed effects model with experimental variation in school characteristics among
children of the same biological parents. We are not aware of any data set that simultaneously
includes genetic data at the individual level, a large set of siblings, and quasi-experimental
within-family variation in school assignment. Therefore, we approximate the ideal-type con-
ditions with the best data available to us. Within this setting, one must make rather strong
identifying assumptions to give our estimates of α, β, and κ a causal interpretation. However,
in our empirical analysis we show extensive evidence that these assumptions are reasonably
well met in our setting.
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Erring on the side of caution, we speak of associations instead causal effects in the remainder of
the paper. What is the direction of biases in case of violations of our identifying assumptions?
Any residual confounding by genetic nurture and selection into schools will bias our estimates
of α and β upwards. As a consequence, bias in our estimate for κ will also be positive (see
Supplementary Material A). Therefore, in the presence of residual confounding due to genetic
nurture and selection into schools, we identify a lower (upper) bound of the substitutability
(complementarity) of genetic endowments and school environments.9

4 DATA

We use data from the National Longitudinal Study of Adolescent to Adult Health (Add Health),
a 5-wave panel study that focuses on the determinants of health-related behaviors and health
outcomes. Add Health is a nationally representative sample of adolescents enrolled in grades
7–12 in 1994/95. Initial information (wave 1, N = 20, 745) was collected from a stratified
sample of 80 high schools across the US as well as from their associated feeder schools. In
addition to in-depth interviews with adolescents, questionnaires were administered to school
representatives, parents, and roughly 90,000 students of the sampled schools. Follow-up in-
home questionnaires were collected in 1996 (wave 2, N = 14, 738), 2001/02 (wave 3, N =

15, 179), and 2008/09 (wave 4, N = 15, 701). In the most recent wave (2016/18, N = 12, 300),
Add Health respondents are between 33 and 43 years old.

In the following, we describe our main variables of interest. Detailed descriptions of all vari-
ables used in our analysis are disclosed in Supplementary Material B.

Outcomes. We measure educational attainment Yi by the total number of years of education
after age 27. In each wave, respondents were asked about their highest level of education at the
time of the interview. For each individual, we use the most recent information and transform
education levels into years of education, following the mapping suggested by Domingue et al.
(2015).10

To analyze the mechanisms behind our headline results, we additionally use a series of mea-

9In theory, this conclusion does not hold if either α or β were downward biased. In practice, this case is very
unlikely. First, the patterns of positive genetic nurture and positive sorting into schools are widely-documented
(Altonji and Mansfield, 2018; Kong et al., 2018). Second, consistent with this evidence, we document positive bias
for α and β when controlling for observable covariates Xi(a) in our data (see Figure 2).

10Numeric values in parentheses: eighth grade or less (8), some high school (10), high school graduate (12),
GED (12), some vocational/technical training (13), some community college (14), some college (14), completed
vocational/technical training (14), associate or junior college degree (14), completed college (16), some graduate
school (17), completed a master’s degree (18), some post-baccalaureate professional education (18), some graduate
training beyond a master’s degree (19), completed post-baccalaureate professional education (19), completed a
doctoral degree (20).
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sures for academic degrees, health, and (non-)cognitive skills. First, academic degrees allow us
to investigate at which educational stage our results emerge. We focus on whether respondents
finished high school, obtained a college degree, or completed a post-graduate degree. Second,
measures for health and (non-)cognitive skills serve as proxy variables for θiA and allow us to
analyze the dimensions of skill development that drive the main findings on educational attain-
ment. We proxy health by quality-adjusted life years (QALY), that we derive from self-assessed
health measures as well as a summary index of diagnosed health conditions. We proxy cogni-
tive skills using the Picture Vocabulary Test (PVT), a test of receptive hearing vocabulary that
is a widely-used measure for verbal ability and scholastic aptitude. We proxy non-cognitive
skills by self-reported measures of general risk aversion and patience (Falk et al., 2018) as well
as self-reported information on the Big Five personality traits (Almlund et al., 2011).

Genetic endowments. Add Health obtained saliva samples from consenting participants in
wave 4. After quality control procedures, genotyped data is available for 9,974 individuals and
609,130 SNPs. Add Health uses this data to calculate different PGS using summary statistics
from existing GWAS. We use a PGS for educational attainment, referred to as PGSEA, that is
based on the GWAS by Lee et al. (2018).11

Lee et al. (2018) perform a meta-analysis of 71 quality-controlled cohort-level GWAS. Their
meta-analysis produced association statistics for around 10 million SNPs, of which 1,271 reached
genome-wide significance. Genes near these genome-wide significant SNPs are relevant for the
central nervous system, and many of them encode proteins that carry out neurophysiological
functions such as neurotransmitter secretion or synaptic plasticity. They are relevant for brain-
development processes before and after birth.

PGSEA is highly predictive of educational attainment and has been widely used in existing
studies. Lee et al. (2018) suggest that PGSEA is a better predictor for years of education than
household income. Including the score in a regression of years of education on a set of controls
yields an incremental R2 of 0.127 in the Add Health sample. Among other uses, PGSEA has
been used to study the formation of early childhood skills (Belsky et al., 2016), educational
attainment (Domingue et al., 2015; Houmark et al., 2020), earnings (Papageorge and Thom,
2020), wealth accumulation (Barth et al., 2020), and social mobility (Belsky et al., 2018).

We standardize PGSEA in our analysis sample so that is has a mean of zero (µ = 0) and a
standard deviation of one (σ = 1).

11Lee et al. (2018) construct PGSEA for two prediction cohorts, Add Health and the Health and Retirement Study
(HRS). PGSEA is based on results from the meta-analysis in which these two cohorts were excluded from the dis-
covery sample. PGSEA was generated from HapMap3 SNPs using the software LDpred—a Bayesian method that
weights each SNP by the posterior mean of its conditional effect given other SNPs.
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School investments. In waves 1 and 2, Add Health administered detailed questionnaires to
headmasters of Add Health schools. The schools are also linked to administrative data from
the Common Core of Data (CCD) and the Private School Survey (PSS). We use these sources
to construct indicators for IS

ia using a principal component analysis that includes the following
school-level information: (i) average class size, (ii) average student-teacher ratio, (iii) share of
teachers with a master degree, (iv) share of new teachers in the current school year, (v) share of
teachers with school-specific tenure of more than five years, and Herfindahl indices measuring
teacher diversity with respect to (vi) race and (vii) Hispanic background.

Many of these characteristics have been shown to predict teacher value-added. For example,
Hanushek et al. (2016) and Ronfeldt et al. (2013) show that a high teacher turnover, which we
proxy by the share of new teachers, impairs teaching quality and student achievement. Papay
and Kraft (2015) and Rockoff (2004) show that teaching experience, which we proxy by the
share of teachers with more than five years of tenure, correlates with teacher performance.
Finally, Clotfelter et al. (2010) and Jacob et al. (2018) show that academic credentials, which we
proxy by the share of teachers with a master’s degree, are positively associated with teacher
effectiveness.

Figure 1 shows the rotated loadings on the first two principal components. The first component
loads almost exclusively on average class size and average student-teacher ratio. Hence, we
interpret this component as an indicator of the “quantity” of teachers, denoted by IQuantity .
The second component loads positively on the percentage of teachers with a master’s degree
and the share of teachers with more than five years of tenure; it loads negatively on the share
of new teachers in the current school year. We interpret this component as an indicator of the
“quality” of teachers, denoted by IQuality. Both factors are coded such that higher values indicate
higher school investments, i.e., higher investments in teacher “quantity” (smaller classes) and
higher teacher “quality” (better teachers), respectively. The calculated factors are orthogonal
to each other by construction and standardized to µ = 0 and σ = 1.12 Furthermore, note that
IQuantity and IQuality are time-invariant measures for each school.

Control variables. Add Health provides extensive information on the environments to which
respondents were exposed during childhood. We approximate the identification pre-requisites
discussed in section 3 by choosing a vector of pre-determined variables Xi(a) to control for ge-
netic nurture effects and selection into schools. Specifically, we control for family background
characteristics by including maternal and paternal education (in years), family religious affil-
iation (Christian/non-Christian), parental birth place (US/non-US), and maternal age at birth

12Intuitively, one may expect a negative correlation between teacher quality and quantity: given a budget, a
school administrator may prefer to invest in teacher quality at the expense of average class size, or vice versa.
However, this is not what we observe in the data. If quality and quantity were substitutes, we would expect the
loadings on the two principal components to pull in diametrically opposed directions. To the contrary, we find that
the variables capturing the quality and quantity dimensions are orthogonal to each other and almost exclusively
load on only one principal component.
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FIGURE 1 – Rotated Loadings on Factors for School Characteristics
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Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This figure shows the rotated factor loadings on IQuality and IQuantity. The principal component analysis
is conducted using the following school-level information: (i) average class size, (ii) average student-teacher ratio, (iii) share of
teachers with a master’s degree, (iv) share of new teachers in the current school year, (v) share of teachers with school-specific
tenure of more than five years, and Herfindahl indices to measure teacher diversity with respect to (vi) race and (vii) Hispanic
background.

(in years). Furthermore, we include the mean and standard deviation of potential wages for
both mothers and fathers across child ages 0–14.13 At the level of children, we control for a
firstborn indicator, age in months, biological sex, as well as their interaction. We follow stan-
dard practice in the literature and account for population stratification in genetic endowments
by including the first 20 principal components of the full matrix of genetic data. Lastly, all
estimations include a vector of state fixed effects.

Note that we focus on pre-determined variables—variables that are fixed prior to the period of
observation—to avoid smearing through "bad controls" (Angrist and Pischke, 2009). However,
in robustness analyses we expand the vector of controls to include potentially endogenous
parental investments and family income. Our results remain unaffected.

Analysis sample. We apply the following sample selection criteria. First, we restrict our sam-
ple to genotyped respondents of European descent.14 This is common practice in the literature

13Note that Add Health contains information on actual income. However, actual income may be a bad control as
it reflects parental responses to both Gi and IS

ia. Therefore, we follow the procedure of Shenhav (2021) and combine
data from the 1970 Census and the March Current Population Survey (1975–2000) to construct potential wages for
gender/education/census region/race/ethnicity cells and match these potential wages to parents of children aged
a = 1, ..., 14.

14The ancestry groups in Add Health are identified by principal component analysis on all unrelated members of
the full Add Health genotyped sample.
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because GWAS are predominantly conducted on this ancestry group. As a consequence, there
is a lack of statistical power to account for population stratification between ancestry groups
and estimates of genetic influence would be biased without this restriction (Martin et al., 2017;
Ware et al., 2017).

Second, we retain the subsample of individuals who (i) visited an Add Health high school or
an associated feeder school in wave 1, and (ii) for whom the high school exit record indicates
that they graduated from the same school. These sample selection criteria strike a balance be-
tween sample size and the accuracy of matching individuals with our measures for schooling
environments. For example, when applying criterion (i), we assume that individuals do in-
deed transfer from feeder schools to designated Add Health schools. While this increases our
sample, it is possible that the information on IS

ia is incorrectly attributed to individuals trans-
ferring to high schools outside the Add Health universe. Reversely, when we apply criterion
(ii), we exclude individuals that may have moved to other high schools during grades 9–12.
In this way, we reduce our sample size but minimize the risk that information on IS

ia is misat-
tributed to transfer students. We note that neither strengthening (i) by excluding individuals
from feeder schools, nor relaxing (ii) by assuming that individuals remain in the same school
through grades 9–12 overturns our main conclusions (Appendix Table A.6).

Third, we drop all observations with missing information in Yi, Gi, IS
ia, and Xi(a) by list-wise

deletion.

Applying these restrictions, we obtain a sample of 3, 075 individuals from 77 high schools
across the US, for which we provide summary statistics in Table 1. 55% are female, and
the average age measured at wave 1 equals ≈ 16 years (194 months). The average educational
attainment in our sample is 14.8 years which exceeds the average educational attainment in the
parental generation by ≈ 1.1 years. Almost all individuals graduate from high school, which
is not surprising given that our sample is restricted to individuals of European descent who
remained in the same high school in grades 9–12. The college completion rate equals ≈ 50%.

To assess sample representativeness, we compare our analysis sample to the 1974–1983 birth co-
horts of non-Hispanic Whites in the American Community Survey (ACS) and the Current Pop-
ulation Survey (CPS) (Appendix Table A.1). This comparison shows a slight over-representation
of females and children of young mothers in our sample. Otherwise, our sample is by and large
comparable to the corresponding groups in the ACS and CPS. In robustness analyses, we re-
weight our analysis sample to match the ACS and CPS with respect to gender composition,
educational attainment of parents, and the age of mothers at birth. Our results remain unaf-
fected (Appendix Table A.6).
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TABLE 1 – Summary Statistics

N=3, 075; Siblings=525; High Schools=77

Mean SD Min Max

Educational Attainment

Years Education 14.81 2.25 8.00 20.00
High School Degree 0.97 0.18 0.00 1.00
2-year College Degree 0.53 0.50 0.00 1.00
4-year College Degree 0.42 0.49 0.00 1.00
Post-Graduate Degree 0.15 0.36 0.00 1.00

Variables of Interest

PGSEA 0.00 1.00 -4.18 3.36
IQuality 0.00 1.00 -3.41 1.92
IQuantity 0.00 1.00 -3.22 3.20

Child Background Characteristics

Female 0.55 0.50 0.00 1.00
Firstborn 0.47 0.50 0.00 1.00
Age in Months (Wave 1) 193.63 19.77 144.00 256.00
Maternal Age at Birth 25.49 4.83 16.00 44.33
Christian 0.82 0.38 0.00 1.00
Education Mother (in Years) 13.63 2.50 8.00 19.00
Education Father (in Years) 13.67 2.68 8.00 19.00
Foreign-born Mother 0.03 0.17 0.00 1.00
Foreign-born Father 0.03 0.16 0.00 1.00
Potential Wage/Hour Mother 12.62 1.38 9.45 14.27
Potential Wage/Hour Father 15.48 1.31 11.14 17.11

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows summary statistics for the core analysis sample. The sample is restricted to genotyped
individuals who (i) are of European descent, (ii) attended an Add Health high school or an associated feeder school in wave 1,
and (iii) graduated from the same school. Observations with missing information in any of the displayed variables are dropped
by list-wise deletion.

5 RESULTS

We present our results in four steps. In section 5.1, we discuss the association of educational at-
tainment, genetic endowments, and school investments in light of the identifying assumptions
discussed in section 3. In section 5.2, we present our estimates for the complementarity param-
eter κ. After a robustness analysis in section 5.3, we conclude with an analysis of mechanisms
in section 5.4.
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5.1 The Association of Educational Attainment with Genetic Endowments and School Invest-
ments

Figure 2 visualizes the association of educational attainment with our measures for genetic en-
dowments Gi and school investments IS

ia. In the left column we show raw correlations that do
not account for the control variables Xi(a). In the right column, we show associations condi-
tional on Xi(a).

First, PGSEA is highly predictive of educational attainment. Without controls, a one-standard-
deviation (1 SD) increase in PGSEA is associated with an increase in educational attainment of
0.607 years. This association does not have a causal interpretation as it may be confounded by
genetic nurture effects. When we control for pre-determined child and family characteristics, a
1 SD increase in PGSEA is associated with an increase in educational attainment of 0.374 years.
This decrease is consistent with sibling studies showing that genetic nurture effects usually
account for 40–50% of the raw association between PGSEA and educational attainment (Kweon
et al., 2020; Muslimova et al., 2020; Ronda et al., forthcoming; Selzam et al., 2019).

Is Xi(a) sufficient to control for genetic nurture effects? We test whether there is residual con-
founding due to genetic nurture by comparing estimates of the between-family model with a
sibling fixed effects model that we estimate on a subsample of our data (N = 525). The within-
family comparison allows us to perfectly control for genetic nurture effects. Therefore, a strong
divergence of between- and within-family estimates would suggest that there is residual ge-
netic nurture that is not picked up by Xi(a). In Appendix Table A.2 we show that this is not
the case. The within-family comparison yields a point estimate of 0.394 that is significant at the
1%-level. This point estimate is very close to the between-family estimate after controlling for
Xi(a) and lends further credence to our research design.

Second, IQuality is highly predictive of educational attainment. Without controls, a 1 SD increase
in IQuality is associated with an increase in educational attainment of 0.543 years. This associa-
tion does not have a causal interpretation as it may be confounded by selection effects. When
we control for pre-determined child and family characteristics, a 1 SD increase in IQuality is
associated with an increase in educational attainment of 0.246 years. This 55% decrease re-
flects positive selection into schools based on "teacher quality"—a pattern that has been thor-
oughly documented in the existing literature for the US (Biasi, forthcoming). Nevertheless,
even when accounting for selection, the association of IQuality and educational attainment re-
mains strong and positive. This result is consistent with prior literature that has repeatedly
demonstrated positive effects of teacher quality on students’ educational success (Chetty et al.,
2014a; Hanushek and Rivkin, 2010).

Is Xi(a) sufficient to control for selection into schools? We test whether there is any residual
confounding due to selection effects by re-running our estimation, replacing educational attain-
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FIGURE 2 – Association of Educational Attainment with PGSEA, IQuality, and IQuantity
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Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This figure visualizes the correlation of completed years of education with PGSEA, IQuality, and IQuantity,
respectively. We bin scatterplots using 20 quantiles of the variable of interest. Gray bars indicate density distributions of the
(residualized) variable of interest. Black lines are fitted from linear regressions of educational attainment on the variable of
interest. In the left-column, we only control for state fixed effects. In the right column, we introduce the full set of control
variables. Child Controls: Firstborn dummy, linear birth cohort trend (in months) by gender, 20 principal components of the full
matrix of genetic data. Family Controls: Age of mother at birth, years of education of both mother and father, average potential
wages of both mother and father, the standard deviation of potential wages of both mother and father, dummies for non-US born
mothers and fathers, a dummy for Christian religion, state fixed effects. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01.
Standard errors are clustered at the school level.

ment with predicted educational attainment. In particular, we predict educational attainment
using a fully interacted model of an indicator for whether the child was breastfed, log fam-
ily income, and maternal and paternal time investments.15 On the one hand, breastfeeding,

15We collect information on a series of activities that the child has engaged in with their mother or father over
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parental income, and time investments are important predictors of children’s educational out-
comes (Agostinelli and Sorrenti, 2018; Kosse, 2016).16 On the other hand, we do not use these
predictors in our estimates but treat them "as if unobservable." Therefore, we can interpret
the association between predicted educational attainment and IQuality as a summary measure
of selection on unobservables: a large and positive association between predicted educational
attainment and IQuality would suggest that there is residual selection into schools that is not
picked up by Xi(a). In Appendix Table A.2 we show that this is not the case. The point esti-
mate of 0.076 is small and insignificant at conventional levels of statistical significance. There-
fore, this test does not point to the presence of strong selection effects after conditioning on
Xi(a). Alternatively, we can assess any residual selection effects by assuming that changes in
the coefficient of IQuality due to the introduction of Xi(a) provide information about the extent of
confounding due to unobservables (Altonji et al., 2005; Cinelli and Hazlett, 2020; Oster, 2019).
We follow Cinelli and Hazlett (2020) and assess the strength of the association that unobserved
confounders would need to have with IQuality and educational attainment to change our con-
clusions. In Appendix Figure B.2, we show that IQuality would remain positive and statistically
significant at the 5%-level even if the partial R2 of unobserved confounders with IQuality and
educational attainment were more than six times higher than the corresponding partial R2 of
paternal education. Given the decisive role of parental education in school choices, and its
strong predictive power for educational outcomes of children, this results lends further confi-
dence that our results are genuine and not a mere reflection of selection into schools based on
family background.

Third, IQuantity is not significantly associated with educational attainment. The weak positive
correlation is imprecisely estimated and does not attain statistical significance at conventional
levels. Furthermore, this result does not change when accounting for selection effects by intro-
ducing control vector Xi(a). This finding is in line with prior literature which has not been able
to establish consistent effects of teacher quantity on students’ educational success (Angrist et
al., 2019; Fredriksson et al., 2013; Leuven and Løkken, 2020). However, this average association
may mask heterogeneity among students with different genetic endowments—a hypothesis
that we test in the following subsection.

In addition to genetic nurture effects and selection effects, a high correlation between Gi and
IS
ia would pose another threat to the identification of the gene-environment interaction. Figure

3 shows that this threat does not exist in our setting. In this figure, we plot the unconditional
PGSEA distribution by tercile of IQuality and IQuantity, respectively. Visual inspection suggests
that the PGSEA distributions are almost congruent to each other within each tercile of the two

the past four weeks. These activities include shopping, playing sports, going to church, talking about dates, going
to the movies and similar events, talking about personal problems, arguing, talking about school work, working
together on school work, and talking about other things at school. Following Anderson (2008) and Kling et al. (2007)
we standardize each response dimension to µ = 0 and σ = 1 and sum them linearly by parent to obtain aggregate
indexes of time investment. See Supplementary Material B for details.

16The R2 of the prediction regression is 0.185.
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FIGURE 3 – PGSEA Distribution by IQuality and IQuantity
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Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This figure shows unconditional PGSEA distribution by terciles of both IQuality and IQuantity . The
central point indicates the median, and the bar indicates the interquartile range. The density distributions represent estimated
Epanechnikov kernel densities.

indicators. In Appendix Table A.3, we present formal statistical tests for this observation. In
particular, we residualize PGSEA, IQuality and IQuantity using control vector Xi(a). We then per-
form two-sample Kolmogorov-Smirnov tests for the equality of PGSEA distributions within
the terciles of IQuality and IQuantity , respectively. Only one of the comparisons is borderline
significant at conventional levels of statistical significance. Hence, we conclude that PGSEA,
IQuality and IQuantity are indeed independently assigned.

5.2 The Interplay of Genetic Endowments and School Investments in the Production of Edu-
cational Attainment

Table 2 shows our baseline estimates for the interaction of genetic endowments and school
investments. In all regressions, we include the vector Xi(a) to control for genetic nurture and
selection into schools.

In column (1), we focus on the teacher quality indicator IQuality. The point estimates for PGSEA and
IQuality replicate the findings from Figure 2 and show a strong and positive association of
PGSEA and IQuality with educational attainment. A 1 SD increase in PGSEA (IQuality) increases
educational attainment by ≈ 0.37 (≈ 0.22) years.
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TABLE 2 – Association of PGSEA and School Environments with Years of Education

Outcome:
Years of Education (1) (2) (3)

PGSEA 0.368∗∗∗

(0.033)
0.370∗∗∗

(0.037)
0.365∗∗∗

(0.033)

IQuality
0.219∗∗∗

(0.078) – 0.214∗∗∗

(0.079)

PGSEA × IQuality
-0.075∗∗

(0.033) – -0.074∗∗

(0.033)

IQuantity – 0.078
(0.063)

0.078
(0.053)

PGSEA × IQuantity – 0.037
(0.037)

0.027
(0.033)

Child Controls ✓ ✓ ✓

Family Controls ✓ ✓ ✓

N 3, 075 3, 075 3, 075

R2 0.338 0.335 0.339

Outcome Mean 14.811 14.811 14.811

Outcome SD 2.249 2.249 2.249

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows the joint association of PGSEA, IQuality and IQuantity with completed years of education.
Child Controls: Firstborn dummy, linear birth cohort trend (in months) by gender, 20 principal components of the full matrix of
genetic data. Family Controls: Age of mother at birth, years of education of both mother and father, average potential wages of
both mother and father, the standard deviation of potential wages of both mother and father, dummies for non-US born mothers
and fathers, a dummy for Christian religion, state fixed effects. All right-hand side variables are standardized on the estimation
sample so that µ = 0, σ = 1. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors (in parentheses) are clustered
at the school level. Standard errors of bias adjusted treatment effects are bootstrapped based on 200 draws.

PGSEA × IQuality is our estimate for the complementarity parameter κ. The negative coefficient
of the interaction term indicates that genetic endowments and teacher quality act as substitutes
in the production of educational attainment. A 1 SD increase in teacher quality reduces the
positive association of educational attainment and PGSEA by ≈ 20% (= 0.08/0.37). This result
is in notable contrast to the existing literature investigating the gene-environment interaction
between PGSEA and parental socio-economic status, which tend to act as complements in the
production of educational attainment (Papageorge and Thom, 2020; Ronda et al., forthcoming).
Furthermore, we highlight that the estimated substitutability is likely a lower bound: positive
bias in the effects of PGSEA and IQuality due to genetic nurture and selection into schools not
captured by Xi(a), results in upward bias in the corresponding gene-environment interaction
(Appendix A). Therefore, in the presence of residual confounding due to genetic nurture and
selection into schools, our estimate of κ would be biased towards zero.

In column (2), we focus on IQuantity. The point estimate for IQuantity is again statistically indis-
tinguishable from zero. The estimate for PGSEA × IQuantity indicates that this null result is not
driven by heterogeneity along the PGSEA distribution. Our estimate for the complementarity
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parameter κ is small and not statistically different from zero.

In column (3), we estimate both complementarity parameters in the same model and show
that our results remain virtually unchanged. This stability is to be expected since IQuality and
IQuantity are distributed independently of each other by construction.

What drives the substitutability of PGSEA and IQuality? In principle, the negative gene-environment
interaction could be due to low PGSEA students benefiting from higher-quality teachers, or high
PGSEA students losing from higher-quality teachers. In Figure 4, we provide evidence for the
former, but not for the latter. In this figure, we show years of education as predicted from the

FIGURE 4 – Association of PGSEA with Years of Education by IQuality
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Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This figure shows a prediction of completed years of education by PGSEA and IQuality cell. Predictions
are calculated using the model estimated in column (3) of Table 2.

estimates in column (3) of Table 2. Moving horizontally from left to right at a given PGSEA level,
we see that predicted education increases sharply in the lower parts of the PGSEA distribution.
To the contrary, in the upper ranges of the PGSEA distribution, predicted education remains
virtually unchanged regardless of the quality of teachers at a given school. This pattern is en-
couraging as it suggests that investments into teacher quality mitigate inequality in educational
outcomes without compromising the attainment of genetically advantaged students.

In Appendix Table A.5, we decompose this effect into the different school characteristics under-
lying the construction of IQuality. We show that the effects of IQuality are especially driven by the
share of teachers with school-specific tenure of more than five years. This measure combines
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information about teaching experience with information about teacher turnover. On the one
hand, teachers have taught for at least five years in their lives and do not suffer from a lack of
basic experience. On the other hand, longer tenure at a given school increases the likelihood
of student-teacher re-matches in consecutive school years. Both features tend to have positive
effects on student learning and are therefore plausible candidates to rationalize the relative ed-
ucational gains of students in the lower tail of the PGSEA distribution (Hill and Jones, 2018;
Hwang et al., 2021; Jackson and Bruegmann, 2009; Rockoff, 2004).

5.3 Robustness Analysis

We check the robustness of our results in two steps. First, we investigate whether IQuality and
IQuantity pick up the effects of other school characteristics that may correlate with student out-
comes. Second, we test whether our estimates of the complementarity parameter κ are con-
founded by the heterogeneity of genetic effects in different family environments.

Other school characteristics. First, in Figure 2 we document positive sorting into schools
based on IQuality. As a consequence, students in schools with high-quality teachers may addi-
tionally be exposed to a more favorable composition of their peer group. It has been widely
documented in the literature that skill formation is influenced by school peers (Bietenbeck,
2019; Isphording and Zölitz, 2020; Sacerdote, 2014).17 Hence, our results for IQuality may re-
flect both the teacher quality and peer group composition. To test this hypothesis, we use Add
Health’s in-school questionnaire that elicits background information from a total of 90,000 stu-
dents in the sampled schools. Based on this questionnaire, we calculate proxy indicators for
the quality of the students’ peers. In particular, we calculate (i) average years of paternal edu-
cation, (ii) the share of single parent families, and (iii) students’ average self-assessment of the
probability of obtaining a college degree.18 Then, we incorporate these indicators as well as
their interaction with PGSEA into our estimation model.

Table 3 displays the results. Column (1) replicates our baseline estimates. In columns (2)–(4),
we sequentially introduce the peer quality indicators as well as their interaction with PGSEA.
Each proxy for peer quality is highly predictive of educational attainment. For example, a 1 SD
increase in the average paternal education of peers is associated with a 0.26 increase in years
of education. Importantly, however, for all considered peer quality indicators, our conclusions
regarding IQuality, IQuantity, and their interaction with genetic endowments remain unaffected.

Second, IQuality and IQuantity may be correlated with school rules and sanction policies. Exist-

17Sotoudeh et al. (2019) show genetic endowments of peers are also associated with individual outcomes.

18To avoid mechanical relationships between individual characteristics and peer group composition we calcu-
late leave-one-out (jackknife) indicators. A detailed description of these variables is disclosed in Supplementary
Material B.
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TABLE 3 – Robustness to Additional School Characteristics

Baseline + School Peer
Characteristics

+ School Sanction
Policies

+ School
VA (GPA)

Outcome:
Years of Education (1)

Educ.
Father

(2)

Single
Parents

(3)

College
Aspir.

(4)

Drugs

(5)

Social

(6)

Acad.

(7) (8)

PGSEA 0.365∗∗∗

(0.033)
0.355∗∗∗

(0.035)
0.363∗∗∗

(0.035)
0.355∗∗∗

(0.034)
0.364∗∗∗

(0.035)
0.361∗∗∗

(0.035)
0.362∗∗∗

(0.035)
0.360∗∗∗

(0.035)

IQuality
0.214∗∗∗

(0.079)
0.142∗∗

(0.068)
0.210∗∗∗

(0.077)
0.202∗∗∗

(0.070)
0.199∗∗

(0.086)
0.188∗∗

(0.084)
0.220∗∗

(0.088)
0.164∗∗

(0.080)

PGSEA × IQuality
-0.074∗∗

(0.033)
-0.078∗∗

(0.036)
-0.074∗∗

(0.033)
-0.078∗∗

(0.034)
-0.073∗∗

(0.035)
-0.075∗∗

(0.035)
-0.069∗∗

(0.035)
-0.073∗∗

(0.035)

IQuantity
0.078
(0.053)

-0.014
(0.055)

0.006
(0.052)

0.000
(0.052)

0.071
(0.058)

0.051
(0.054)

0.050
(0.057)

0.033
(0.062)

PGSEA × IQuantity
0.027
(0.033)

0.018
(0.029)

0.030
(0.033)

0.025
(0.031)

0.027
(0.034)

0.027
(0.033)

0.022
(0.033)

0.032
(0.035)

School Characteristic – 0.257∗∗∗

(0.053)
-0.204∗∗∗

(0.046)
0.209∗∗∗

(0.044)
0.003
(0.052)

-0.106
(0.074)

0.059
(0.072)

0.115∗

(0.061)

PGSEA ×
School Characteristic

– -0.048
(0.043)

0.030
(0.039)

-0.049
(0.035)

0.005
(0.041)

0.025
(0.030)

0.037
(0.037)

-0.020
(0.031)

Child Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Family Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

N 3, 075 2, 959 2, 959 2, 959 2, 993 2, 993 2, 993 2, 768

R2 0.339 0.347 0.347 0.346 0.341 0.342 0.342 0.319

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows the joint association of PGSEA, IQuality and IQuantity with completed years of education.
We control for additional school characteristics and their interaction with PGSEA. The relevant school characteristics are indicated
in the column header. Child Controls: Firstborn dummy, linear birth cohort trend (in months) by gender, 20 principal components
of the full matrix of genetic data. Family Controls: Age of mother at birth, years of education of both mother and father, average
potential wages of both mother and father, the standard deviation of potential wages of both mother and father, dummies
for non-US born mothers and fathers, a dummy for Christian religion, state fixed effects. All right-hand side variables are
standardized on the estimation sample so that µ = 0, σ = 1. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard
errors (in parentheses) are clustered at the school level.

ing literature suggests that school rules may promote educational attainment (Bacher-Hicks
et al., 2019). For example, the success of charter schools has been attributed to strict “no ex-
cuses” policies (Angrist et al., 2013). Hence, our results for IQuality may reflect both the quality
of teachers and the effects of school rules. To test this hypothesis, we exploit information from
headmaster questionnaires and conduct a principal component analysis on various school poli-
cies.19 We extract three components that reflect the school’s strictness regarding (i) drug use,
(ii) social misconduct, and (iii) academic misconduct.

19In wave 1, headmasters were asked about the school’s policy in the following domains of behavior: cheating,
fighting with or injuring another student, alcohol or drug possession, drinking alcohol or using illegal drugs, smok-
ing, verbally or physically abusing a teacher, and stealing school property. Possible measures are (i) no action, (ii)
verbal warning, (iii) minor action, (iv) in-school suspension, (v) out-of-school suspension, and (vi) expulsion. A
detailed description of these variables is disclosed in Supplementary Material B.
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In columns (5)–(7) of Table 3, we sequentially introduce the strictness indicators as well as their
interaction with PGSEA. None of the indicators is predictive of educational attainment, nor is
there an interaction with genetic endowments. Our conclusions with respect to IQuality, IQuantity,
and their interaction with genetic endowments remain unaffected.

Third, there may be unobservable school characteristics that drive the relationship between
IQuality, IQuantity, and educational attainment. To address this concern, we use transcript records
from grades 9–12 of roughly 12,000 Add Health respondents to calculate cohort-specific mea-
sures of school value-added in GPAs for Science, Math, and English. In the extant literature,
value-added measures are mostly calculated with respect to test scores that are unaffected by
evaluation biases of teachers. To the contrary, GPAs capture student progress in cognitive and
behavioral outcomes as well as teacher perceptions (Jackson, 2019). In spite of these intricacies,
GPAs are highly predictive of long-term student outcomes (Borghans et al., 2016; Kirkebøen,
2021). Therefore, GPA-based value-added measures are a good way to capture the quality of
schooling environments beyond the measures reported in headmaster surveys and administra-
tive data. Specifically, we follow the indirect calculation procedures proposed by Chetty et al.
(2014a) and Jackson et al. (2020): we residualize subject-specific GPAs from lagged GPAs in
English, Math, and Science, lagged and contemporaneous measures of tracks in these subjects,
and a rich set of individual background characteristics. In turn, we sum the residuals to cal-
culate school-times-cohort fixed effects. To avoid mechanical relationships between individual
outcomes and cohort-specific school effects, we calculate leave-cohort-out predictions, giving
greater weight to neighboring cohorts. We calculate these measures separately for each sub-
ject, but summarize the school-specific information by extracting the first principal component
from the three value-added measures (see Supplementary Material B for details).

In column (8) of Table 3, we introduce school value-added as well as its interaction with
PGSEA as additional controls. While school value-added is indeed predictive of educational
attainment, there is no effect heterogeneity across the PGSEA distribution. Furthermore, the
associations of IQuality , IQuantity , and PGSEA with educational attainment remain unaffected.
Hence, we find no evidence that our relationships of interest are confounded by unobservable
school characteristics.

Family environments and behavioral responses. In our baseline analysis, we control for a
rich set of parental background characteristics to control for genetic nurture effects and selec-
tion into schools. However, even if we were able to perfectly control for these confounding
factors, the complementarity parameter for genetic endowments and school investments may
still be susceptible to bias from the following sources: (i) heterogeneity in behavioral adjust-
ments that arise in response to observed genetic endowments and schooling environments
(Biroli et al., 2022), and (ii) gene-environment interactions with family characteristics and in-
vestments (Domingue et al., 2020; Keller, 2014). For example, highly educated parents may try
to compensate for poor schooling environments of their children by helping with homework,
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providing additional educational stimuli etc. Since parental education correlates with PGSEA,
similar parental responses could also explain the negative gene-environment interaction be-
tween PGSEA and IQuality.

Table 4 presents results that address such concerns. Column (1) replicates our baseline esti-
mates. In column (2), we test for potential confounding due to behavioral responses. In par-
ticular, we follow Biroli et al. (2022) and include a set of higher-order polynomials for PGSEA,
IQuality, IQuantity and their mutual interactions to absorb heterogeneity in behavioral responses.
Despite a drop in precision, our results remain unaltered. In column (3) we test for poten-
tial confounding due to gene-environment interactions with family characteristics and invest-
ments. In particular, we follow Keller (2014) and extend our estimation model by interacting
genetic endowments and school environments with the full control vector Xi(a). In doing so,
we allow for the possibility that family socio-economic status interacts with both genetic en-
dowments and school investments. Our conclusions with regard to IQuality, IQuantity, and their
interaction with PGSEA remain unaffected.

Lastly, in column (4) of Table 4, we again estimate a fully interacted model but also incorpo-
rate controls for family environments that are potentially endogenous to PGSEA and schooling
environments. In particular, we include indexes for breastfeeding, maternal and paternal time
investments, and the log of annual family income. Despite a decrease in sample size and the
associated loss in precision, our results remain unaffected.

Overall, these results provide us with confidence that our estimates for the complementarity
parameter κ are not confounded by the heterogeneity in genetic effects across family environ-
ments.

Further robustness checks. In Supplementary Figures B.3-B.5, we show the results of addi-
tional robustness analyses. First, we check whether our results are driven by outlier schools.
Therefore, we re-run our analysis 77 times, excluding one school from the sample per iteration.
Reassuringly, the results are very close to our benchmark estimates in each iteration (Supple-
mentary Figure B.3). Second, we check whether our findings are driven by ceiling effects in
educational attainment. To this end, we re-run our analysis, artificially censoring educational
attainment stepwise from above. If ceiling effects were driving our results, we would expect
the interaction between IQuality and PGSEA to increase across parts of the censoring interval.
However, this is not the case. Instead, the corresponding coefficient decreases monotonically
(Supplementary Figure B.4). Third, we conduct a placebo analysis. To this end, we re-run our
analysis for 20 additional outcomes for which we do not expect a differential impact of teacher
quality depending on genetic endowments. For only one out of these 20 outcomes do we de-
tect a statistically significant interaction effect at the 10%-level (Supplementary Figure B.5). In
summary, these additional checks further support the conclusion that our main findings are
genuine.
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TABLE 4 – Robustness to Family Environments and Behavioral Responses

Outcome:
Years of Education

Baseline

(1)

Higher-Order
Polynomials

(2)

Full
Interaction

(3)

Endogenous
Controls

(4)

PGSEA 0.365∗∗∗

(0.033)
0.486∗∗∗

(0.060)
0.364∗∗∗

(0.031)
0.370∗∗∗

(0.044)

IQuality
0.214∗∗∗

(0.079)
0.189∗

(0.108)
0.202∗∗

(0.079)
0.272∗∗∗

(0.093)

PGSEA × IQuality
-0.074∗∗

(0.033)
-0.070∗∗

(0.035)
-0.095∗∗∗

(0.035)
-0.093∗∗

(0.043)

IQuantity
0.078
(0.053)

-0.115
(0.082)

0.082
(0.060)

0.072
(0.079)

PGSEA × IQuantity
0.027
(0.033)

0.031
(0.034)

0.024
(0.031)

0.072
(0.079)

Child Controls ✓ ✓ ✓ ✓

Family Controls ✓ ✓ ✓ ✓

Higher-Order Polynomials × ✓ × ×
Full Interaction × × ✓ ✓

Endogenous Controls × × × ✓

N 3, 075 3, 075 3, 075 2, 109

R2 0.339 0.342 0.359 0.385

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows the joint association of PGSEA, IQuality and IQuantity with completed years of education.
In column (2) we control for second- and third-order polynomials of PGSEA , IQuality and IQuantity , and interactions of their
second order polynomials. In column (3) we control for all possible interactions between PGSEA , IQuality and IQuantity and the
control variables. In column (4) we introduce potentially endogenous control variables. Endogenous control variables include
an indicator for breastfeeding, indexes for maternal time investments, paternal time investments, and log family income. We
also allow for all possible interactions between PGSEA, IQuality and IQuantity and all (endogenous) control variables. Child Controls:
Firstborn dummy, linear birth cohort trend (in months) by gender, 20 principal components of the full matrix of genetic data.
Family Controls: Age of mother at birth, years of education of both mother and father, average potential wages of both mother and
father, the standard deviation of potential wages of both mother and father, dummies for non-US born mothers and fathers, a
dummy for Christian religion, state fixed effects. All right-hand side variables are standardized on the estimation sample so that
µ = 0, σ = 1. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors (in parentheses) are clustered at the school
level.

5.4 Mechanisms

In this section, we analyze the mechanisms underlying the substitutability of genetic endow-
ments and teacher quality. We abstract from IQuantity given its robust non-association with
educational outcomes (see sections 5.1–5.3).

Educational degrees. Total years of education summarizes information from various educa-
tional stages, with each stage requiring a different mix of skills θi (Cunha et al., 2006, 2010).
Therefore, we repeat our analysis by replacing total years of education with binary variables
for whether respondents obtained (i) at least a high school degree or GED, (ii) a 2-year college
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degree, (iii) a 4-year college degree, or (iv) a post-graduate degree.

In Figure 5, we present the resulting point estimates for the complementarity parameter κ and
the associated confidence bands.

FIGURE 5 – Association of PGSEA and School/Family Environments with Degree
Attainment
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Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This figure shows point estimates and 90% confidence bands for the interaction between PGSEA and
school/family environments during childhood and their association with completed levels of education. Estimates follow the
specification of equation (7). Child Controls: Firstborn dummy, linear birth cohort trend (in months) by gender, 20 principal
components of the full matrix of genetic data. Family Controls: Age of mother at birth, years of education of both mother and
father, average potential wages of both mother and father, the standard deviation of potential wages of both mother and father,
dummies for non-US born mothers and fathers, a dummy for Christian religion, state fixed effects. Standard errors are clustered
at the school level.

The circular series suggests that the compensating effect of teacher quality follows has a U-
shaped pattern throughout the educational life cycle. The probability of dropping out of high
school decreases slightly, followed by an increase in substitutability for 2-year and 4-year col-
lege degrees. The substitutability of high-quality teachers and genetic endowments levels off
at the post-graduate level. This pattern is consistent with the following interpretation. High
school graduation is a relatively "inclusive" educational outcome that is accessible to most, in-
cluding low PGSEA students in low-quality schooling environments. Evidence of this effect
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is the high school graduation rate of 97% in our sample (Table 1). In contrast, post-graduate
education is a relatively "exclusive" educational outcome that is more accessible to students
with a advantageous genetic endowments and who experienced conducive environments. In
both cases, there is limited opportunity for high-quality teachers to make a difference for low
PGSEA students. We interpret this pattern as suggestive since the confidence bands are wide
and we cannot statistically distinguish among the point estimates for different educational de-
grees.

The triangular series shows that the gene-environment interplay is very different for school-
ing environments and family environments. Consistent with Buser et al. (2021a) and Papa-
george and Thom (2020), the complementarity between genetic endowments and family socio-
economic status (SES) increases over the educational life-cycle of individuals.20 On the one
hand, the differential patterns of school investment and family SES point to the complexity of
the education production function where genetic endowments and different investments inter-
act in distinct and time-variant ways over the life-cycle of individuals. On the other hand, the
patterns suggest that investments into school environments may be able to offset the inequality-
increasing interplay between genetic endowments and family investments.

Skill formation. In section 3, we formulated educational attainment Yi as a function of chil-
dren’s skills θi at the end of childhood. The skills that influence educational attainment are mul-
tidimensional and comprise a broad set of health indicators and (non-)cognitive skills (Alm-
lund et al., 2011; Heckman and Mosso, 2014). Furthermore, there is evidence in the literature
that each of these skill dimensions is shaped, in part, by genetic influence (Buser et al., 2021a;
Demange et al., 2020, 2021).

We evaluate these potential channels by analyzing the associations of PGSEA and IQuality with
a set of intermediate outcomes. In terms of health outcomes, we focus on subjective health,
measured by quality-adjusted life years (QALY), and objective health, measured by an index
that comprises information on whether the respondent is obese, has first-stage hypertension,
or has high cholesterol. In terms of cognitive skills, we use the Picture Vocabulary Test (PVT)
as a measure of verbal intelligence. Lastly, we focus on personality and preferences as two
distinct conceptualizations of non-cognitive skills (Becker et al., 2012; Humphries and Kosse,
2017). In particular, we focus on risk aversion and patience, and the Big Five personality traits.
All measures were collected in waves 3 and 4 of Add Health, that is, after respondents had
left high school but potentially before they had completed their highest level of education (see
Supplementary Material B for details).

Health, cognitive skills, risk aversion, and patience have been shown to be strong predictors of

20In particular we use the "social origins score" from Belsky et al. (2018) measured in wave 1. Results for alter-
native measures of family SES, such as family income or potential wages of either parent, are similar and available
upon request.
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educational attainment (Burks et al., 2015; Castillo et al., 2018a,b; Jackson, 2009). Furthermore,
openness and emotional stability—the opposite of neuroticism—are positively associated with
educational attainment (Becker et al., 2012; Buser et al., 2021b). Based on this evidence, we ex-
pect positive associations of both PGSEA and IQuality with each of these intermediate outcomes.
The sign of the gene-environment interaction is a priori unclear. However, given the substi-
tutability of PGSEA and IQuality in the production of educational attainment, we expect similar
substitutability patterns for a subset of these intermediate outcomes as well.

Table 5 summarizes the results. In column (1)–(2) of Panel (a), we focus on health outcomes. As
expected, our results show a positive association of PGSEA with both subjective and objective
health. A 1 SD increase in PGSEA increases subjective (objective) health by 0.067 SD (0.042 SD).
Furthermore, the negative coefficient on the interaction of PGSEA and IQuality suggests that this
increase is particularly pronounced for low PGSEA students: a 1 SD increase in teacher quality
reduces the positive association of subjective health with the PGSEA by ≈ 40% (= 0.027/0.067).

In column (3) of Panel (a), we focus on the PVT as a measure of cognitive skills. As expected,
our results show positive associations of both PGSEA and IQuality with the PVT. A 1 SD increase
in PGSEA (IQuality) is associated with a 0.179 SD (0.104 SD) increase in the PVT. Furthermore,
both factors are substitutes for each other. A 1 SD increase in teacher quality reduces the posi-
tive association of PVT and PGSEA by ≈ 20% (= 0.035/0.179).

In columns (4)–(5) of Panel (a), we focus on economic preferences. As expected, we find
strong positive associations of PGSEA with both risk aversion and patience. A 1 SD increase
in PGSEA is associated with a 0.038 SD (0.073 SD) increase in risk aversion (patience). Further-
more, PGSEA and IQuality are substitutes for each other. A 1 SD increase in IQuality reduces the
positive associations of risk aversion and patience with the PGSEA by ≈ 121% (= 0.046/0.038)
and ≈ 62% (= 0.045/0.073), respectively.

In Panel (b), we focus on personality traits. As expected, we find a positive association of
PGSEA with openness and a negative association of PGSEA with neuroticism. However, IQuality is
not predictive of any of the Big Five dimensions. Furthermore, we find no evidence of comple-
mentarity between PGSEA and IQuality in the production of personality traits.

To summarize: we find negative gene-environment interactions between genetic endowments
and teacher quality in the production of subjective health, cognitive skills, risk aversion and pa-
tience. Given their predictive power for educational attainment, these intermediate outcomes
are plausible channels for explaining the substitutability of genetic endowments and teacher
quality in the production of educational attainment.

29



TABLE 5 – Association of PGSEA and School Environments with Skill Measures

Health Cognitive Preferences

Panel (a) Subjective
(1)

Objective
(2)

PVT
(3)

Risk
(4)

Patience
(5)

PGSEA 0.067∗∗∗

(0.017)
0.042∗∗

(0.018)
0.179∗∗∗

(0.017)
0.038∗∗

(0.015)
0.073∗∗∗

(0.017)

IQuality
0.016
(0.043)

0.027
(0.037)

0.104∗∗∗

(0.039)
0.047
(0.030)

0.046
(0.038)

PGSEA × IQuality
-0.027∗∗

(0.014)
-0.000
(0.020)

-0.035∗

(0.018)
-0.046∗∗∗

(0.015)
-0.045∗∗∗

(0.013)

Child Controls ✓ ✓ ✓ ✓ ✓

Family Controls ✓ ✓ ✓ ✓ ✓

N 3, 075 3, 075 2, 995 3, 071 3, 071

R2 0.080 0.057 0.222 0.114 0.098

Personality

Panel (b) Open-
ness
(1)

Conscient-
iousness

(2)

Extra-
version

(3)

Agree-
ableness

(4)

Neuro-
ticism

(5)

PGSEA 0.071∗∗∗

(0.017)
-0.018
(0.017)

-0.006
(0.019)

0.037∗

(0.020)
-0.084∗∗∗

(0.019)

IQuality
0.030
(0.031)

-0.033
(0.036)

-0.044
(0.030)

0.055
(0.037)

-0.020
(0.035)

PGSEA × IQuality
0.010
(0.013)

-0.007
(0.015)

-0.001
(0.023)

-0.008
(0.019)

0.022
(0.019)

Child Controls ✓ ✓ ✓ ✓ ✓

Family Controls ✓ ✓ ✓ ✓ ✓

N 3, 053 3, 073 3, 069 3, 071 3, 071

R2 0.092 0.042 0.031 0.135 0.094

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows the joint association of PGSEA , IQuality and IQuantity with health, cognitive skills,
preferences, and personality. Child Controls: Firstborn dummy, linear birth cohort trend (in months) by gender, 20 principal
components of the full matrix of genetic data. Family Controls: Age of mother at birth, years of education of both mother and
father, average potential wages of both mother and father, the standard deviation of potential wages of both mother and father,
dummies for non-US born mothers and fathers, a dummy for Christian religion, state fixed effects. All right-hand side variables
are standardized on the estimation sample so that µ = 0, σ = 1. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard
errors (in parentheses) are clustered at the school level.

6 CONCLUSION

The question of how natural endowments and environmental factors determine life outcomes
has a long history of inquiry in philosophy and science (Darwin, 1859; Descartes, 1641; Lamarck,
1838; Locke, 1690). The assumption that life outcomes are the result of genetic and environ-
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mental factors initially led to the so-called "nature versus nurture" debate. However, current
research has moved beyond this simplistic dichotomy and recognizes that individual life out-
comes are the result of a complex interplay between nature and nurture. This insight high-
lights that the importance of genetic endowments for life outcomes is not immutable. Instead,
it opens a path for policy interventions that shape the relevant environment.

In this paper, we contribute to this research agenda by studying the interplay of genetic endow-
ments and schooling environments in the production of educational outcomes. Making use of
recent advances in molecular genetics, we link an individual-level index of genetic predispo-
sitions for educational success with measures for teacher "quality" and "quantity" during high
school. In turn, we investigate whether the importance of genetic endowments varies with the
quality of the high school environment.

Our findings suggest that school investments have the potential to mitigate the genetic gra-
dient in educational attainment. However, this conclusion depends on the particular type of
investment. On the one hand, increases in "teacher quality" offset genetic disadvantages. On
the other hand, we find no substitutability with respect to "teacher quantity." Our findings fur-
thermore suggest that higher gains in educational attainment for students with lower genetic
endowments are mediated by gains in subjective health, language skills, risk aversion, and
patience.

The use of genetics in education research has an ugly history. Therefore, many people are
wary of the emergence of genetic markers in this context, especially when these markers are
used for genetic screening (Martschenko et al., 2019). We emphasize that our results do neither
presuppose nor endorse the use of genetic screening for educational interventions. Instead, our
results suggest that universal policy reform that increases the quality of teachers for all students
may provide an important step to level the playing field regardless of a student’s draw in the
genetic lottery.
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A SUPPLEMENTARY TABLES

TABLE A.1 – Sample Representativeness

Population (Cohorts 1974-1983) Analysis Sample

All Non-Hispanic White Unweighted Re-Weighted

Gender

Male 0.498 0.503 0.453 0.503
Female 0.502 0.497 0.547 0.497

Education Mother

≤ High School 0.536 0.489 0.493 0.489
> High School; < College Degree 0.281 0.302 0.218 0.301
≥ College Degree 0.183 0.209 0.289 0.210

Education Father

≤ High School 0.472 0.425 0.491 0.425
> High School; < College Degree 0.255 0.271 0.196 0.271
≥ College Degree 0.273 0.304 0.313 0.303

Age Mother at Birth

< 25 Years 0.353 0.330 0.486 0.330
≥ 25 Years 0.647 0.670 0.514 0.670

Parental Income

< $50,000 0.557 0.491 0.530 0.515
≥ $50,000; < $100,000 0.352 0.403 0.390 0.402
≥ $100,000 0.091 0.106 0.080 0.083

Education Respondent

≤ High School 0.301 0.225 0.181 0.173
> High School; < College Degree 0.327 0.344 0.399 0.403
≥ College Degree 0.372 0.431 0.419 0.424

Data: National Longitudinal Study of Adolescent to Adult Health, American Community Survey (ACS), Current Popula-
tion Survey (CPS).
Note: Own calculations. This table shows summary statistics of the core analysis sample in comparison to other population
samples. It shows respondents’ characteristics for the following samples: (i) the US population from birth cohorts 1974–1983, (ii)
the Non-Hispanic White US population from birth cohorts 1974–1983, (iii) the core estimation sample, and (iv) the core estimation
sample re-weighted to match (ii) with respect to Gender, Education Mother, Education Father, and Age Mother at Birth. Population
data on Gender and Education Respondent from IPUMS ACS 2019 (Ruggles et al., 2020). Population data on Education Mother,
Education Father, Age Mother at Birth, and Parental Income from IPUMS CPS 1994 (Flood et al., 2020).
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TABLE A.2 – Testing for Genetic Nurture and Selection into Schools

Baseline
Sample

Between Family (2)
vs.

Within-Family (3)

Years of Educ. (4)
vs.

Predicted Years of Educ. (5)

(1) (2) (3) (4) (5)

PGSEA 0.368∗∗∗

(0.037)
0.384∗∗∗

(0.109)
0.394∗∗∗

(0.148) – –

IQuality
0.217∗∗∗

(0.079) – – 0.291∗∗∗

(0.096)
0.076
(0.052)

IQuantity
0.078
(0.051) – – 0.035

(0.058)
0.067
(0.072)

Child Controls ✓ ✓ × ✓ ✓

Family Controls ✓ ✓ × ✓ ✓

Sibling Fixed Effect × × ✓ × ×
N 3, 075 525 525 2, 109 2, 109

R2 0.337 0.384 0.747 0.322 0.330

Outcome Mean 14.811 14.928 14.928 14.968 14.968

Outcome SD 2.249 2.262 2.262 2.247 0.955

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows the associations of PGSEA , IQuality and IQuantity with years of education. The first
panel shows estimates in our baseline sample. The second panel shows estimates in the sibling sample. Column (2) displays
results from a between-family comparison. Column (3) displays results from a within-family comparison. The third panel shows
estimates in a sample with information on breastfeeding, parental time investments, and parental income. Column (4) displays
results for completed years of education. Column (5) displays results for predicted years of education. Predicted education
is calculated from a fully interacted regression of completed years of education on breastfeeding, maternal time investments,
paternal time investments, and log family income. Child Controls: Firstborn dummy, linear birth cohort trend (in months) by
gender, 20 principal components of the full matrix of genetic data. Family Controls: Age of mother at birth, years of education
of both mother and father, average potential wages of both mother and father, the standard deviation of potential wages of
both mother and father, dummies for non-US born mothers and fathers, a dummy for Christian religion, state fixed effects. All
right-hand side variables are standardized on the estimation sample so that µ = 0, σ = 1. Significance levels: * p < 0.10, **
p < 0.05, *** p < 0.01. Standard errors (in parentheses) are clustered at the school level.
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TABLE A.3 – Tests for Equality of PGSEA Distributions

Terciles of IQuality / IQuantity

1 2 3

Panel (a): IQuality

1 – – –
2 0.70 – –
3 0.08 0.45 –

Panel (b): IQuantity

1 – – –
2 0.63 – –
3 0.99 0.84 –

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows the results of pairwise Kolmogorov-Smirnov tests for the PGSEA distributions within
different terciles of IQuality and IQuantity, respectively. Results are summarized by the p-value for the null hypothesis that the two
PGSEA distributions are equal within the corresponding terciles of IQuality and IQuantity.
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TABLE A.4 – Alternative Polygenic Scores

Baseline + Controls for
Other Polygenic Scores

Outcome:
Years of Education (1)

Body Mass
Index

(2)

ADHD

(3)

Depressive
Symptoms

(4)

Intelligence

(5)

Ever
Smoker

(6)

Sleep
Duration

(7)

PGSEA 0.365∗∗∗

(0.033)
0.351∗∗∗

(0.035)
0.340∗∗∗

(0.032)
0.366∗∗∗

(0.034)
0.352∗∗∗

(0.040)
0.341∗∗∗

(0.038)
0.369∗∗∗

(0.033)

IQuality
0.214∗∗∗

(0.079)
0.218∗∗∗

(0.079)
0.216∗∗∗

(0.078)
0.218∗∗∗

(0.078)
0.219∗∗∗

(0.077)
0.217∗∗∗

(0.076)
0.219∗∗∗

(0.078)

PGSEA × IQuality
-0.074∗∗

(0.033)
-0.083∗∗

(0.035)
-0.075∗∗

(0.033)
-0.074∗∗

(0.034)
-0.080∗∗

(0.037)
-0.080∗∗

(0.037)
-0.074∗∗

(0.033)

Other PGS – -0.072∗∗

(0.032)
-0.132∗∗∗

(0.034)
-0.026
(0.032)

0.030
(0.040)

-0.134∗∗∗

(0.041)
-0.005
(0.032)

Other PGS × IQuality – -0.029
(0.037)

0.020
(0.030)

0.011
(0.030)

0.009
(0.040)

-0.012
(0.039)

0.000
(0.034)

Child Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓

Family Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓

N 3, 075 3, 075 3, 075 3, 075 3, 075 3, 075 3, 075

R2 0.339 0.339 0.341 0.338 0.338 0.341 0.338

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows the joint association of PGSEA, IQuality and IQuantity with completed years of education.
We control for other PGS and their interaction with IQuality and IQuantity . The relevant PGS are indicated in the column header.
Child Controls: Firstborn dummy, linear birth cohort trend (in months) by gender, 20 principal components of the full matrix of
genetic data. Family Controls: Age of mother at birth, years of education of both mother and father, average potential wages of
both mother and father, the standard deviation of potential wages of both mother and father, dummies for non-US born mothers
and fathers, a dummy for Christian religion, state fixed effects. All right-hand side variables are standardized on the estimation
sample so that µ = 0, σ = 1. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors (in parentheses) are clustered
at the school level.
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TABLE A.5 – Decomposition of IQuality and IQuantity

Baseline Decomposition of IQuality and IQuantity

(1)

Average
Class Size

(2)

STR

(3)

Tenure
> 5 years

(4)

Tenure
< 1 year

(5)

MA
Degree

(6)

HI
Race
(7)

HI
Hisp.

(8)

PGSEA 0.365∗∗∗

(0.033)
0.372∗∗∗

(0.037)
0.372∗∗∗

(0.037)
0.368∗∗∗

(0.035)
0.372∗∗∗

(0.036)
0.370∗∗∗

(0.034)
0.374∗∗∗

(0.036)
0.373∗∗∗

(0.036)

IQuality
0.214∗∗∗

(0.079) – – – – – – –

PGSEA × IQuality
-0.074∗∗

(0.033) – – – – – – –

IQuantity
0.078
(0.053) – – – – – – –

PGSEA × IQuantity
0.027
(0.033) – – – – – – –

School Characteristic – -0.073
(0.058)

-0.000
(0.085)

0.191∗∗∗

(0.066)
0.094
(0.066)

0.182∗∗∗

(0.067)
-0.017
(0.068)

-0.121∗∗∗

(0.037)

PGSEA ×
School Characteristic

– -0.029
(0.036)

-0.047
(0.035)

-0.062∗∗

(0.030)
0.041
(0.039)

-0.054
(0.033)

-0.048
(0.034)

-0.013
(0.026)

Child Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Family Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

N 3, 075 3, 075 3, 075 3, 075 3, 075 3, 075 3, 075 3, 075

R2 0.339 0.335 0.335 0.338 0.336 0.337 0.335 0.336

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows the joint association of PGSEAand the school characteristics used for the construction
of IQuality and IQuantity with completed years of education. The relevant school characteristics are indicated in the column header.
Child Controls: Firstborn dummy, linear birth cohort trend (in months) by gender, 20 principal components of the full matrix of
genetic data. Family Controls: Age of mother at birth, years of education of both mother and father, average potential wages of
both mother and father, the standard deviation of potential wages of both mother and father, dummies for non-US born mothers
and fathers, a dummy for Christian religion, state fixed effects. All right-hand side variables are standardized on the estimation
sample so that µ = 0, σ = 1. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors (in parentheses) are clustered
at the school level.
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TABLE A.6 – Robustness to Sample Composition

Baseline Alternative Sample Composition

Outcome:
Years of Education (1)

Re-
Weighted

(2)

Excl. all
(Potential) Movers

(3)

Inc. all
(Potential) Movers

(4)

PGSEA 0.365∗∗∗

(0.033)
0.353∗∗∗

(0.034)
0.355∗∗∗

(0.039)
0.372∗∗∗

(0.028)

IQuality
0.214∗∗∗

(0.079)
0.186∗∗

(0.080)
0.140
(0.094)

0.207∗∗∗

(0.074)

PGSEA × IQuality
-0.074∗∗

(0.033)
-0.076∗∗

(0.033)
-0.070∗

(0.038)
-0.047∗

(0.028)

IQuantity
0.078
(0.053)

0.060
(0.059)

0.084
(0.065)

0.065
(0.070)

PGSEA × IQuantity
0.027
(0.033)

0.039
(0.035)

0.012
(0.036)

0.038
(0.024)

Child Controls ✓ ✓ ✓ ✓

Family Controls ✓ ✓ ✓ ✓

N 3, 075 3, 021 2, 520 4, 176

R2 0.339 0.317 0.330 0.324

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows the joint association of PGSEA, IQuality and IQuantity with completed years of education.
In column (2) we re-weight our analysis sample to match ACS and CPS with respect to gender composition, educational
attainment of parents, and the age of mothers at birth—see also Appendix Table A.1. In column (3) we exclude respondents that
visit feeder schools in wave 1 and for whom we do not have information on subsequent high schools. In column (4) we include
respondents that are in Add Health high schools in wave 1 and for whom we do not have information on subsequent high
schools. Child Controls: Firstborn dummy, linear birth cohort trend (in months) by gender, 20 principal components of the full
matrix of genetic data. Family Controls: Age of mother at birth, years of education of both mother and father, average potential
wages of both mother and father, the standard deviation of potential wages of both mother and father, dummies for non-US born
mothers and fathers, a dummy for Christian religion, state fixed effects. All right-hand side variables are standardized on the
estimation sample so that µ = 0, σ = 1. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors (in parentheses)
are clustered at the school level.
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B SUPPLEMENTARY FIGURES

FIGURE B.1 – Top 3 School Expenditure Categories (in % of Total)

Teacher Instructional Expenditures

Capital Outlay

Operation and Maintenance.1

.2

.3

.4

.5

2001/02 2005/06 2010/11 2015/16

Data: Common Core of Data (CCD), National Public Education Financial Survey.
Note: Own calculations. This figure shows per-pupil expenditures shares in public elementary and secondary schools
in the US. Teacher Instructional Expenditures includes teachers’ salaries and employee benefits. Capital Outlay includes
expenditures for property and for buildings and alterations completed by school district staff or contractors. Operation
and Maintenance includes expenditures for the supervision of operations and maintenance, the operation of buildings, the
care and upkeep of grounds and equipment, vehicle operations (other than student transportation) and maintenance, and security.
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FIGURE B.2 – Sensitivity of IQuality to Unobserved Confounders
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Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This figure shows the sensitivity of the point estimate for IQualityto unobserved confounding variables.
Following the procedure of Cinelli and Hazlett (2020), we calculate the bias-adjusted treatment effect of IQualityunder different
assumptions about the partial R2 of confounding variables with the variables of interest and the partial R2 of confounding
variables with years of education. Each contour line shows p-values (or point estimates) for different combinations of the two
partial R2. Each circle shows resulting values for different multiples paternal education. The diamond shows baseline estimates
from Figure 2. Standard errors are clustered at the school level.
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FIGURE B.3 – Sensitivity to Outlier Schools
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Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This figure shows point estimates and 90% confidence bands of the interaction of PGSEA and IQuality,
and its association with years of education. Each estimate is derived from a subsample of the data in which we drop one High
School, respectively. Estimates follow the specification of equation (7). Child Controls: Firstborn dummy, linear birth cohort trend
(in months) by gender, 20 principal components of the full matrix of genetic data. Family Controls: Age of mother at birth, years
of education of both mother and father, average potential wages of both mother and father, the standard deviation of potential
wages of both mother and father, dummies for non-US born mothers and fathers, a dummy for Christian religion, state fixed
effects. Standard errors are clustered at the school level.
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FIGURE B.4 – Sensitivity to Ceiling Effects
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Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This figure shows point estimates and 90% confidence bands of the interaction of PGSEA and IQuality,
and its association with years of education. Each estimate is derived from the full sample while censoring the outcome variable
at different levels from above. Estimates follow the specification of equation (7). Child Controls: Firstborn dummy, linear birth
cohort trend (in months) by gender, 20 principal components of the full matrix of genetic data. Family Controls: Age of mother at
birth, years of education of both mother and father, average potential wages of both mother and father, the standard deviation of
potential wages of both mother and father, dummies for non-US born mothers and fathers, a dummy for Christian religion, state
fixed effects. Standard errors are clustered at the school level.
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FIGURE B.5 – Association of PGSEA and IQuality with Educational Attainment and Placebo
Outcomes
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Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This figure shows point estimates and 90% confidence bands of the interaction of PGSEA and IQuality,
and its association with years of education as well as a series of placebo outcomes. Estimates follow the specification of equation
(7). All outcomes are standardized on the estimation sample so that µ = 0, σ = 1. Child Controls: Firstborn dummy, linear birth
cohort trend (in months) by gender, 20 principal components of the full matrix of genetic data. Family Controls: Age of mother at
birth, years of education of both mother and father, average potential wages of both mother and father, the standard deviation of
potential wages of both mother and father, dummies for non-US born mothers and fathers, a dummy for Christian religion, state
fixed effects. Standard errors are clustered at the school level.
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A BIAS IN GENE-ENVIRONMENT INTERACTION

Assume the following population model:

yi = α + β1xi1 + β2xi2 + β3xi3 + δzi + ϵi,

where x1 ∼ N (0, 1), x2 ∼ N (0, 1), x3 = x1 × x2, Cov(x1, x2) = 0, and Cov(ϵ|x1, x2, z) = 0.
Suppose zi is unobserved and δ > 0.

We estimate the following model via OLS:

yi = α̃ + β̃1xi1 + β̃2xi2 + β̃3xi3 + ϵ̃i,

Let’s focus on the estimate of the interaction effect only:

plim β̃3 = β3 + δ Cov(x3,z)
Var(x3)

= β3 + δ Cov(x1×x2,z)
Var(x1)×Var(x2)︸ ︷︷ ︸

=Bias

.

Following Bohrnstedt and Goldberger (1969), we can write Cov(x1 × x2, z) as follows:

Cov(x1 × x2, z) = E[x1]× Cov(x2, z) + E[x2]× Cov(x1, z) + E[∆x1∆x2∆z],

where ∆x1 = (x1 − E[x1]), ∆x2 = (x2 − E[x2]), ∆z = (z − E[z]).

Using x1, x2 ∼ N (0, 1) and Cov(x1, x2) = 0, this expression simplifies to:

Cov(x1 × x2, z) = E[∆x1∆x2∆z] = E[∆x1
√

∆z]E[∆x2
√

∆z].

Therefore, we can write the bias term as follows:

δ
E[∆x1

√
∆z]E[∆x2

√
∆z]

Var(x1)× Var(x2)
.

Note that E[∆x1
√

∆z] > 0 ↔ β̃1 > β1 and E[∆x2
√

∆z] > 0 ↔ β̃2 > β2. Therefore, the
following conditions hold:

1. If β̃1 > β1 and β̃2 > β2 or β̃1 < β1 and β̃2 < β2: β̃3 is upward biased.

2. If β̃1 < β1 and β̃2 > β2 or β̃1 > β1 and β̃2 < β2: β̃3 is downward biased.
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B DATA APPENDIX

B.1 Outcome Variables

Educational attainment. We measure educational attainment by total years of education. In
each wave, respondents were asked about their highest level of education at the time of the
interview. For each respondent, we use the most recent information and transform education
levels into years of education following the mapping suggested by Domingue et al. (2015).
Numeric values in parentheses: eighth grade or less (8), some high school (10), high school
graduate (12), GED (12), some vocational/technical training (13), some community college (14),
some college (14), completed vocational/technical training (14), associate or junior college de-
gree (14), completed college (16), some graduate school (17), completed a master’s degree (18),
some postbaccalaureate professional education (18), some graduate training beyond a master’s
degree (19), completed post-baccalaureate professional education (19), completed a doctoral
degree (20).

We use the most recent available information to construct the following measures for educa-
tional degrees: High School (including GED), 2-year College, 4-year College, and Post-Graduate.
Two-year college degrees include associate and junior college degrees as well as vocational
and technical training after high school. Four-year college degrees include bachelor’s degrees.
Post-graduate degrees include master’s degrees, doctoral degrees, and post-baccalaureate pro-
fessional degrees. If available, information is taken from wave 5; otherwise we take it from
waves 4 or 3, respectively. We only include respondents for which we observe educational
degrees when they are at least 27 years old at the time of observation. We assume an ordinal
ranking of degrees (high school < 2-year college < 4-year college < post-graduate) and assign
the possession of a lower-ranked degree if a respondent obtained a higher-ranked degree. For
example, we assume that a respondent has finished high school if he or she has obtained a
college degree, even if we don’t have explicit information about high school graduation status.

Health. We proxy subjective health by quality-adjusted life years (QALY) that we derive from
self-assessed health (SAH) measures. We use information from waves 3 and 4, where partic-
ipants were asked “in general, how is your health?” We convert their (categorical) responses
into a continuous measure using a mapping proposed by Van Doorslaer and Jones (2003). Us-
ing information about objective health—the Health Utility Index Mark III—Van Doorslaer and
Jones (2003) scale the intervals of the SAH categories. This approach yields “quality weights”
for health between 0 and 1. The values for each health status category are as follows (qual-
ity weights in parentheses): “excellent” (0.9833), “very good” (0.9311), “good” (0.841), “fair”
(0.707), and “poor” (0.401).1 We average resulting QALY measures across waves 3 and 4.

1See Table 4 in Van Doorslaer and Jones (2003).

2



We construct an index of objective health based on information from wave 4. Specifically, we sum
the standardized values about whether a respondent (i) is obese, (ii) has stage one hyperten-
sion, and (iii) has high cholesterol (as indicated by the respondent). Each item was answered
with either “yes” (= 1) or “no” (= 0). We reverse-code our measure of objective health such that
higher values indicate better health.

Cognitive skills. The Picture Vocabulary Test (PVT) is a test for receptive hearing vocabulary
and is a widely-used proxy for verbal ability and scholastic aptitude. To administer the PVT, an
examiner presents a series of pictures to the respondent. There are four pictures per page, and
the examiner speaks a word describing one of the pictures. The respondent then has to indicate
the picture that the word describes. In our analysis we use age-adjusted PVT percentile ranks
from wave 3 (Harris, 2020).

preferences. We construct two measures of preferences: risk aversion and patience. In waves 3
and 4, participants were asked (i) whether they like to take risks, and (ii) whether they live their
life without much thought for the future. Questions were answered on a five-point Likert scale
ranging from “strongly agree” to “strongly disagree.” We reverse-code both measures and use
averages from waves 3 and 4 in our analysis.

Personality. The Big Five personality traits are openness to experience, conscientiousness,
extraversion, agreeableness, and neuroticism (Almlund et al., 2011). We use information from
wave 4 to construct personality measures. Participants were asked a set of questions that each
relate to one of the five personality traits. Questions were answered on a five-point Likert scale
ranging from “strongly agree” to “strongly disagree.” We use averages of the following ques-
tions in our analysis. Openness: (i) “I have a vivid imagination,” (ii) “I have difficulty under-
standing abstract ideas” (reverse-coded), (iii) “I am not interested in abstract ideas” (reverse-
coded), (iv) “I do not have a good imagination” (reverse-coded). Conscientiousness: (i) “I get
chores done right away,” (ii) “I like order,” (iii) “I often forget to put things back in their proper
place” (reverse-coded), (iv) “I make a mess of things” (reverse-coded). Extraversion: (i) “I am
the life of the party,” (ii) “I talk to a lot of different people at parties,” (iii) “I don’t talk a lot”
(reverse-coded), (iv) “I keep in the background” (reverse-coded). Agreeableness: (i) “I sym-
pathize with others’ feelings,” (ii) “I feel others’ emotions,” (iii) “I am not interested in other
people’s problems” (reverse-coded), (iv) “I am not really interested in others” (reverse-coded).
Neuroticism: (i) “I have frequent mood swings,” (ii) “I get upset easily,” (iii) “I am relaxed most
of the time” (reverse-coded), (iv) “I seldom feel blue” (reverse-coded).

Parental investment (as-if unobserved). To measure parental time investments, we use infor-
mation on a series of activities that children have done with their mother or father in the last
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four weeks. Specifically, the child is asked whether he or she has (i) gone shopping, (ii) played
a sport, (iii) gone to a religious service or church-related event, (iv) talked about someone he
or she is dating, or a party he or she went to, (v) gone to a movie, play, museum, concert, or
sports event, (vi) had a talk about a personal problem he or she was having, (vii) had a seri-
ous argument about him or her behavior, (viii) talked about his or her school work or grades,
(ix) worked on a project for school, (x) talked about other things he or she is doing in school.
Questions were answered with “yes” (= 1) or “no” (= 0). We standardize answers to µ = 0 and
σ = 1 on the full sample of Add Health respondents and then sum by parent (Anderson, 2008;
Kling et al., 2007).

Information about breastfeeding and family income is taken from wave 1. Parents were asked
about whether the child was breastfed (yes or no) and about their income. We use the logarithm
of the latter (replacing zero incomes with a 1 to prevent a loss of observations).

Placebo outcomes All placebo outcomes are binary variables (except body height and weight)
and constructed using information from waves 4 or 5. Each respondent’s height (in inches),
weight (in pounds), and whether he or she (i) has even been diagnosed with cancer/leukemia, (ii)
needs vision correction, (iii) has had seasonal allergies during the four weeks prior to the inter-
view, and (iv) ever had a motor vehicle accident is taken from wave 5 if available, and wave 4
otherwise. Similarly, information about whether the respondent’s biological mother or father
is still alive and whether they have ever been in jail, whether any sibling has died, and the gen-
der of the resondent’s first-born child (male = 1, female = 0, no child = missing) is taken from
wave 5 if available, and wave 4 otherwise. Whether the respondent has had a miscarriage (both
males and females) is taken from wave 4 only (yes = 1, no = 0, respondent has never been preg-
nant/never had a pregnant partner = missing). Information about whether the respondent
considers him or herself heterosexual, attends religious service, owns an iPhone, did any sports
during the weeks prior to the interview, and his or her political leanings (not being “middle-of-
the-road”) is taken from wave 5 if available, and wave 4 otherwise. Wave 4 Interview <July and
Wave 4 Interview <July equal 1 if the respective interview was conducted between January and
June, and 0 otherwise.

B.2 Variables of Interest

Polygenic scores. Add Health obtained saliva samples from consenting participants in wave
4. After quality control procedures, genotyped data is available for 9,974 individuals and
609,130 SNPs. Add Health uses this data and calculates a set of different PGS using sum-
mary statistics from existing GWAS. Our baseline measure PGSEA is based on statistics from
Lee et al. (2018). In our analysis, we also use the PGS for body mass index (BMI) (Yengo et al.,
2018), attention deficit hyperactivity disorder (ADHD) (Demontis et al., 2019), depressive symp-
toms (Howard et al., 2019), intelligence (Savage et al., 2018), smoking (Liu et al., 2019), and sleep
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TABLE S.1 – Summary Statistics (Outcomes)

Obs. Mean SD Min Max

Educational Attainment

Years Education 3,075 14.81 2.25 8.00 20.00
High School Degree 3,075 0.97 0.18 0.00 1.00
2-year College Degree 3,075 0.53 0.50 0.00 1.00
4-year College Degree 3,075 0.42 0.49 0.00 1.00
Post-Graduate Degree 3,075 0.15 0.36 0.00 1.00

Health

Subjective 3,075 0.91 0.07 0.40 0.98
Objective 3,075 0.03 1.93 -6.46 1.62

Cognitive Skills

Picture Vocabulary Test 2,995 59.95 25.91 0.00 100.00

Preferences

Risk Aversion 3,071 2.83 0.86 1.00 5.00
Patience 3,071 3.93 0.72 1.00 5.00

Personality

Openness 3,053 3.63 0.63 1.00 5.00
Conscientousness 3,073 3.65 0.70 1.25 5.00
Extraversion 3,069 3.33 0.77 1.00 5.00
Agreeableness 3,071 3.87 0.58 1.00 5.00
Neuroticism 3,071 2.55 0.70 1.00 5.00

Parental Investments (As-If-Unobserved)

Breastfed 2,844 0.48 0.50 0.00 1.00
Time Investment Mother 3,075 0.53 4.33 -8.51 14.89
Time Investment Father 2,538 0.32 4.28 -6.47 16.74
Family income (log) 2,588 3.76 0.73 0.00 6.91

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows summary statistics for outcome variables in our core analysis sample. The sample is
restricted to genotyped individuals of (i) European descent, (ii) who visited an Add Health high school or an associated feeder
school in wave 1, and (iii) who graduated from the same school. Observations with missing information in any of the displayed
variables are dropped by list-wise deletion.

duration (Jansen et al., 2019). All polygenic scores are standardized to µ = 0 and σ = 1 on the
full sample of genotyped Add Health respondents.

School characteristics. In wave 1 and 2, Add Health administered questionnaires to head-
masters of Add Health schools. We use this information to construct indicators for high school
investments using a principal components analysis that includes the following school-level
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TABLE S.2 – Summary Statistics (Placebo Outcomes)

Obs. Mean SD Min Max

Body Height 3,074 67.79 4.11 55.00 92.00
Body Weight 3,070 191.07 51.53 82.00 500.00
Diagnosed w/ cancer 3,075 0.02 0.15 0.00 1.00
Glasses 3,074 0.53 0.50 0.00 1.00
Seasonal Allergy 3,075 0.18 0.38 0.00 1.00
Car accident 3,075 0.10 0.30 0.00 1.00
Mother alive 3,073 0.94 0.24 0.00 1.00
Father alive 3,040 0.83 0.38 0.00 1.00
All sib’s alive 2,960 0.09 0.28 0.00 1.00
Mother ever jailed 3,073 0.02 0.15 0.00 1.00
Father ever jailed 3,005 0.12 0.32 0.00 1.00
Sex of first child 2,147 0.51 0.50 0.00 1.00
Early pregnancy loss 1,730 0.22 0.41 0.00 1.00
Heterosexual 3,075 0.84 0.36 0.00 1.00
Political leanings (non-center) 3,011 0.53 0.50 0.00 1.00
Frequency of religious service 3,075 0.60 0.49 0.00 1.00
Sports last week 3,075 0.88 0.32 0.00 1.00
IPhone User 1,185 0.56 0.50 0.00 1.00
Wave 4 Interview <July 3,075 0.79 0.41 0.00 1.00
Wave 5 Interview <July 2,490 0.33 0.47 0.00 1.00

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows summary statistics for outcome variables in our core analysis sample. The sample is
restricted to genotyped individuals of (i) European descent, (ii) who visited an Add Health high school or an associated feeder
school in wave 1, and (iii) who graduated from the same school. Observations with missing information in any of the displayed
variables are dropped by list-wise deletion.

information: (i) average class size, (ii) share of teachers with a master degree, (iii) share of
new teachers in the current school year, (iv) share of teachers with school-specific tenure of
more than five years, and Herfindahl indices to measure teacher diversity with respect to (v)
race and (vi) Hispanic background.2 We also include school-level information about the av-
erage student-teacher ratio (number of full-time students per full-time equivalent teachers) in
1995/96 taken from the Common Core of Data (CCD) and the Private School Survey (PSS). We
apply a factor rotation for interpretability reasons (oblique oblimin rotation of the Kaiser nor-
malized matrix with γ = 0; see Gorsuch, 1983). The first component loads almost exclusively
on average class size and average student-teacher ratio. Hence, we interpret this component,
IQuantity, as an indicator for the “quantity” of teachers. The second component primarily loads
positively on the percentage of teachers with a master degree and the share of teachers with a
tenure of more than five years; it loads negatively on the share of new teachers in the current

2Herfindahl indices are calculated by first squaring the share of each component and then summing up resulting
values (i.e. H = ∑N

i=1 a2
i , where ai is the share of component i, and N is the total number of components). For

the Herfindahl index for race, we include the schools’ share of full-time classroom teachers that are (i) White, (ii)
Black or African American, (iii) American Indian or Native American, (iv) and Asian or Pacific Islander. For the
Herfindahl index for Hispanic background, we include the schools’ share of full-time classroom teachers that are (i)
Hispanic or of Spanish origin, and (ii) neither Hispanic nor of Spanish origin.
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school year. We interpret this component, IQuality, as an indicator for the “quality” of teachers.
Both factors are coded such that higher values indicate higher school investments, i.e. higher
teacher “quantity” investments (smaller classes) and higher teacher “quality” investments (bet-
ter teachers), respectively. The calculated factors are orthogonal to each other by construction.
They are standardized to µ = 0 and σ = 1 on the full sample of Add Health high schools.3

Family socio-economic status. We use the social origins factor score constructed by Belsky et al.
(2018). Their measure uses information about parental education, parental occupation, house-
hold income, and household receipt of public assistance in wave 1. The score is standardized
to µ = 0 and σ = 1 on the full sample of Add Health respondents in wave 1.

TABLE S.3 – Summary Statistics (Variables of Interest)

Obs. Mean SD Min Max

Polygenic Scores

PGSEA 3,075 0.05 1.00 -4.13 3.39
BMI 3,075 -0.02 1.00 -3.42 3.56
ADHD 3,075 -0.05 0.99 -3.82 3.48
Depressive Symptoms 3,075 -0.02 1.01 -3.79 3.55
Intelligence 3,075 0.02 0.99 -3.30 4.06
Ever Smoker 3,075 -0.04 1.00 -4.25 4.25
Sleep Duration 3,075 0.02 0.99 -3.74 2.99

School Characteristics

IQuality 3,075 0.06 0.91 -3.04 1.79
IQuantity 3,075 -0.02 0.82 -2.65 2.59

Family SES

Social Origins Factor Score 3,018 0.37 1.12 -4.40 3.51

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows summary statistics for variables of interest in our core analysis sample. The sample is
restricted to genotyped individuals of (i) European descent, (ii) who visited an Add Health high school or an associated feeder
school in wave 1, and (iii) who graduated from the same school. Observations with missing information in any of the displayed
variables are dropped by list-wise deletion.

B.3 Control Variables

Child characteristics. The child’s gender (female or male, as indicated by the interviewer) is
taken from the in-home questionnaire in wave 1.

3Note that in an oblique rotation, factors may be slightly correlated.
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We calculate the child’s age (in months) at each wave by subtracting the child’s birth date from
the date of interview. Because birth dates have minor inconsistencies across waves, we take
averages across waves 1 to 4.

We use the first 20 principal components of full matrix of the genetic data. The components
are obtained from a principal components analysis on the matrix of SNPs in Add Health (see
Braudt and Harris, 2020, for a discussion). The principal components are standardized to µ = 0
and σ = 1 on the full sample of genotyped Add Health respondents.

Family socio-economic status. We use information from wave 1 to construct measures of par-
ents’ education. We transform parents’ highest degree into years of education following the
mapping suggested by Domingue et al. (2015). Numeric values in parentheses: never went
to school (0), eighth grade or less (8), some high school (10), completed vocational/technical
training instead of high school (10), went to school but level unknown (12), respondent doesn’t
know (12), high school graduate (12), GED (12), completed vocational/technical training after
high school (14), some college (14), completed college (16), professional training beyond a mas-
ter’s degree (19). Where available, mothers’ and fathers’ education refers to the resident parent.
If this information is not available, we use the biological parents’ education instead.

Information about mother’s age at birth (in years) is obtained from wave 1 if available, and wave
2 otherwise. To calculate age at birth, we take information about mother’s age (as indicated by
the child) and subtract the age of the child at the respective wave.

Information about religion (Christian or not) is obtained from wave 1 (as indicated by the child).

We calculate potential wages for population group g in time period t according to the following
formula (Shenhav, 2021):

ŵgt = ∑
j

Ejg,1970
Eg,1970

× ∑
o

Eojg,1970
Ejg,1970

(
πojt,−r

)
× wojt,−r,

where Ejg,1970
Eg,1970

describes the group-specific employment share of industry j in 1970, Eojg,1970
Ejg,1970

de-
scribes the group- and industry-specific employment share of occupation o in 1970, πojt,−r de-
scribes the leave-region-out industry-specific employment growth in occupation o for year t
relative to 1970 (scaled by the overall employment growth in occupation o for year t relative
to 1970), and wojt,−s describes the leave-region-out average hourly wage paid in year t for each
occupation/industry/region cell. We define groups g by individuals that are homogeneous in
gender (male, female), educational attainment (< High School, High School, > High School),
and ethnicity (Non-Hispanic White, Hispanic, Non-Hispanic Black). We define regions r by
census regions (North-East, Midwest, South, West). Employment shares in 1970 are taken from
the 1970 decennial census. Employment shares and wages in periods t are taken from the
March Supplements of the Current Population Survey (CPS) over the time period 1975-2000.
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We match time series of ŵgt to the parents of respondents in Add Health based on information
about g. Then we calculate (i) mean potential wages across respondent ages 0–14, and (ii) the
standard deviation in potential wages across respondent ages 0–14.

School characteristics. We use information about school peer characteristics from the in-school
questionnaire in wave 1. Specifically, for each school we calculate average years of education of
students’ fathers, the share of single parents, and the average subjective likelihood of students
to attend college. We transform the father’s highest degree into years of education follow-
ing the mapping suggested by Domingue et al. (2015). Numeric values in parentheses: never
went to school (0), eighth grade or less (8), some high school (10), went to school but level
unknown (12), respondent doesn’t know (12), high school graduate (12), GED (12), completed
vocational/technical training after high school (14), some college (14), completed college (16),
professional training beyond a four-year college (19). For college aspiration, students indicate
how likely it is that they will graduate from college. Responses range from “no chance” (= 0)
to “it will happen” (= 8). We define a student to have college aspiration if his or her response
is above “about 50-50” (= 4), and to have no college aspiration otherwise. To prevent mechani-
cal correlation between school peer characteristics and respondent characteristics, we calculate
averages and shares while excluding individual respondents (leave-one-out).

We use information from the school administrator questionnaire in wave 1 to construct mea-
sures of sanction policies by means of a principal components analysis. School administrators
were asked what happens to a student who is caught in their school (i) cheating, (ii) fight-
ing with another student, (iii) injuring another student, (iv) possessing alcohol, (v) possessing
an illegal drug, (vi) possessing a weapon, (vii) drinking alcohol at school, (viii) using an il-
legal drug at school, (ix) smoking at school, (x) verbally abusing a teacher, (xi) physically in-
juring a teacher, and (xii) stealing school property. Responses are “minor action”, “in-school
suspension”, “out-of-school suspension”, and “expulsion.” Administrators were asked about
sanctions in response to both first and second occurrences. We apply a factor rotation for inter-
pretability reasons (oblique oblimin rotation of the Kaiser normalized matrix with γ = 0; see
Gorsuch, 1983). The first three components load on variables reflecting the school’s strictness
regarding (i) drug use, (ii) social misconduct, and (iii) academic misconduct. The calculated
factors are orthogonal to each other by construction. They are standardized to µ = 0 and σ = 1
on the full sample of Add Health high schools.4

We calculate value-added measures with respect to GPAs in subject s for cohort c visiting high

4Note that in an oblique rotation, factors may be slightly correlated.
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school j following a two-step procedure (Chetty et al., 2014):

GPAs
igjc = βsZigjc + VAs

jc + ϵs
igjc,

V̂A
s
jc =

1
N

N

∑
i∈jc

(VAs
jc + ϵ̂s

igjc).

Zigjc contains grade fixed effects δg, lagged GPAs from grade levels g − 1 for English, Math
and Science as well as current and lagged grade- and subject-specific indicators for academic
tracks in English, Math and Science (3 levels per grade times subject cell). To avoid mechanical
relationships, we predict ṼA

s
jc excluding data from cohort c and choosing a weighting vector

ϕs = [ϕs
c−5, ..., ϕs

c+5] that minimizes the out-of-sample mean-squared error. Hence, ṼA
s
jc is our

best prediction based on other cohorts of how much school j will increase GPAs in subject s in
one year of high school relative to the improvements of similar students at other schools. We
calculate ṼA

s
jc for English, Math and Science. In turn, we run a principal component analysis

and use the first principal component as the aggregate measure of school value-added. The
principal component is standardized to µ = 0 and σ = 1 on the full sample of high schools
with available transcript data on Add Health respondents.
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TABLE S.4 – Summary Statistics (Controls)

Obs. Mean SD Min Max

Child Characteristics

Female 3,075 0.55 0.50 0.00 1.00
Age in Months (Wave 1) 3,075 193.63 19.77 144.00 256.00
Principal Component 1 3,075 0.00 0.01 -0.14 0.10
Principal Component 2 3,075 -0.00 0.01 -0.37 0.07
Principal Component 3 3,075 0.00 0.01 -0.10 0.02
Principal Component 4 3,075 0.00 0.01 -0.09 0.65
Principal Component 5 3,075 -0.00 0.01 -0.07 0.18
Principal Component 6 3,075 -0.00 0.01 -0.14 0.19
Principal Component 7 3,075 -0.00 0.01 -0.13 0.33
Principal Component 8 3,075 -0.00 0.01 -0.37 0.08
Principal Component 9 3,075 0.00 0.01 -0.06 0.07
Principal Component 10 3,075 -0.00 0.01 -0.58 0.26
Principal Component 11 3,075 0.00 0.01 -0.25 0.37
Principal Component 12 3,075 0.00 0.01 -0.39 0.18
Principal Component 13 3,075 -0.00 0.01 -0.35 0.18
Principal Component 14 3,075 -0.00 0.01 -0.12 0.23
Principal Component 15 3,075 0.00 0.01 -0.28 0.23
Principal Component 16 3,075 0.00 0.02 -0.15 0.66
Principal Component 17 3,075 -0.00 0.01 -0.50 0.24
Principal Component 18 3,075 -0.00 0.01 -0.29 0.20
Principal Component 19 3,075 0.00 0.01 -0.26 0.46
Principal Component 20 3,075 -0.00 0.01 -0.18 0.27

Family SES

Education Mother (in Years) 3,075 13.63 2.50 8.00 19.00
Education Father (in Years) 3,075 13.67 2.68 8.00 19.00
Maternal Age at Birth 3,075 25.49 4.83 16.00 44.33
Christian 3,075 0.82 0.38 0.00 1.00
Potential Wage/Hour Mother (Mean) 3,075 12.62 1.38 9.45 14.27
Potential Wage/Hour Father (Mean) 3,075 15.48 1.31 11.14 17.11
Potential Wage/Hour Mother (SD) 3,075 0.36 0.11 0.12 0.51
Potential Wage/Hour Father (SD) 3,075 0.40 0.08 0.20 0.65

School Characteristics

Peer Characteristics (Educ. Father) 2,959 13.57 1.05 10.90 17.84
Peer Characteristics (Single Parents) 2,959 0.24 0.08 0.00 0.60
Peer Characteristics (College Aspir.) 2,959 0.76 0.08 0.44 1.00
Sanction Policies (Drugs) 2,993 0.06 0.85 -2.65 4.16
Sanction Policies (Social) 2,993 0.12 0.76 -2.98 2.36
Sanction Policies (Acad.) 2,993 0.05 0.83 -2.42 1.69
Value-Added (GPA) 2,768 0.21 1.55 -4.18 4.41

Data: National Longitudinal Study of Adolescent to Adult Health.
Note: Own calculations. This table shows summary statistics for control variables in our core analysis sample. The sample is
restricted to genotyped individuals of (i) European descent, (ii) who visited an Add Health high school or an associated feeder
school in wave 1, and (iii) who graduated from the same school. Observations with missing information in any of the displayed
variables are dropped by list-wise deletion.
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