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Significance

 Education is a core determinant 
of life outcomes, and equity in 
educational systems is a central 
policy goal. An important 
question in the literature is 
whether schools can reduce 
inequities arising from social 
background and genetic 
differences between children. 
Using causal estimates of 
gene–environment interactions 
in the school context, we 
investigate whether schools can 
compensate for genetic 
differences captured by polygenic 
indices for educational 
attainment. We find a negative 
gene–environment interaction 
for reading skills but not 
numeracy, indicating that schools 
can compensate for the effects of 
differences in polygenic indices 
for educational attainment.
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In this paper, we investigate whether better schools can compensate for the effects 
of children’s genetic differences. To this end, we combine data from the Norwegian 
Mother, Father, and Child Cohort Study (MoBa) with Norwegian register data to esti-
mate the interaction between measures of children’s predisposition to education and 
school quality. We use MoBa’s genetic data to compute polygenic indices for educational 
attainment (PGIEA). Importantly, MoBa includes genetic data on mother-father-child 
trios, allowing us to identify causal genetic effects using within-family variation. We 
calculate school value-added measures from Norwegian register data, allowing us 
to causally estimate school quality effects. Leveraging the advantages of both data 
sources, we provide a causally identified study of gene–environment interactions in 
the school context. We find evidence for substitutability of PGIEA and school quality 
in reading but not numeracy: A 1 SD increase of school quality decreases the impact 
of a 1 SD increase of PGIEA on reading test scores by 6%. The substitutability arises 
through gains of students at the lower end of the PGIEA distribution. This suggests 
that investments in school quality may help reduce educational inequalities arising 
from genetic differences between students.

education | gene–environment interaction | polygenic indices | school value-added

 A core topic in the social sciences is the question of how well schools reduce the inequity 
of birth. A substantial body of literature has explored the extent to which schools fulfill 
their purpose of compensating for the effects of background differences among children 
that lie beyond their control. Traditionally, this research has focused on inequalities in 
school performance by socioeconomic status (SES), race, and gender ( 1   – 3 ). Here, we 
consider whether schools compensate or reinforce the effects of children’s genetic 
differences.

 Genetic differences between children play a significant role in skills development, with 
the twin study heritability for childhood school performance estimated at approximately 
50% ( 4 ,  5 ). Notably, these genetic influences interact with social influences on academic 
skills, such as family socioeconomic status ( 6 ) and the broader sociopolitical environment 
( 7 ). Evidence of gene–environment interactions is highly relevant to social policy; it 
underscores the fact that environments do not affect all individuals equally. Interventions 
that counteract genetic influences could serve as vital policy levers for fostering educa-
tional equity.

 Given the potential policy implications, understanding gene–environment interac-
tions in educational settings is of particular interest. Traditional behavioral genetic study 
samples limit research on genetic interactions with school environments because twins 
usually attend the same school. Nonetheless, several twin studies have examined gene–
environment interactions within schools. Taylor et al. ( 8 ) found that genetic variance 
in oral reading fluency increased with higher teacher quality (as measured by classroom 
reading gains). Guimond et al. ( 9 ) found that genetic effects on academic achievement 
were stronger when teachers used frequent praise and infrequent punishment—similarly 
supporting genetic amplification rather than compensation in more advantaged educa-
tional settings.

 The recent availability of polygenic indices (PGIs) has catalyzed research into how 
genetic factors interplay with school environments. While twin studies capture total her-
itability, PGIs capture only a subset of genetic effects—those indexed by variants identified 
in genome-wide association (GWA) studies, such as of educational attainment. In contrast 
to twin studies, PGIs estimate genetic effects at the individual level, allowing for analyses 
based on broader and more representative population samples. Importantly, the genetic 
associations identified in GWA studies of educational outcomes reflect effects that emerge 
within the particular normative social and educational contexts of study, rather than 
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representing inherent genetic disadvantages. The variants associ-
ated with lower educational attainment might be different in dif-
ferent contexts.

 The emerging PGI-based literature reveals complex patterns of 
gene-by-school environment interactions. On one hand, Harden 
et al. ( 10 ) found that schools with greater socioeconomic resources 
appeared to compensate for genetic disadvantages in reducing 
dropout from basic math while reinforcing genetic advantages in 
the pursuit of advanced mathematics. Two other school-level stud-
ies yielded inconclusive or null results, finding that initial gene–
environment interactions disappear when accounting for scale 
artifacts and school socioeconomic composition ( 11 ,  12 ). On the 
other hand, two recent studies have found that higher-quality 
schools compensate for the effects of differences in educational 
attainment PGIs on test scores and years of schooling ( 13 ,  14 ).

 These varying findings suggest that gene–environment interac-
tion findings in education research may depend on various factors 
including: 1) the specific educational outcome examined—differ-
ent patterns may emerge for basic skill acquisition (such as decod-
ing in reading) versus advanced achievement (such as complex 
problem-solving); 2) the developmental stage being studied, since 
genetic and environmental influences may shift from elementary 
through high school and beyond; 3) subject matter, as numeracy 
and reading may each show distinct patterns of heritability and 
environmental sensitivity; and 4) crucially, whether studies meas-
ure school quality in a way that captures schools’ effectiveness to 
promote learning rather than simply reflecting the predetermined 
characteristics of their student populations (e.g., student ability, 
parental socioeconomic status, and ethnicity).

 The primary challenge in existing research is the difficulty of 
identifying exogenous variation in both genetic factors and school 
quality measures. Estimates of gene–environment interactions 
(GxE) are biased when genetic factors (G) and/or the environment 
of interest (E) correlate with other variables that influence out-
comes. An effective approach to address the first source of bias is 
by using within-family PGIs. Within-family variation in PGIs is 
a random “genetic lottery” ( 15 ), meaning that effects cannot be 
confounded by other family characteristics. This approach was 
first adopted by Cheesman et al. ( 16 ) in the context of gene–envi-
ronment interactions within schools. However, the study lacked 
a method for capturing exogenous variation in school quality and 

was limited in capturing only the school environments of children 
participating in the cohort study. Without identifying causal 
effects, we cannot conclude whether social advantages increase the 
expression of genetic differences or instead support compensation 
and diathesis stress models of child development, whereby social 
advantages buffer genetic influences.

 Here, we address these concerns by incorporating exogenous 
variation in both genetics and environments. We leverage 
within-family PGIs through parent–offspring genetic data in the 
Norwegian Mother Father Child Cohort study (MoBa) and use 
established school value-added (VA) indicators, integrating data 
from Norwegian registers, thus encompassing all Norwegian chil-
dren in the cohort ( 17 ,  18 ). The Norwegian context and rich 
educational data provide the ideal setting for validating our causal 
gene–environment interaction approach. 

Results

Analysis Sample. Our analysis is based on the Norwegian 
Mother, Father, and Child Cohort Study (MoBa) (19), linked to 
population-wide administrative records containing students’ national 
standardized test scores and school identifiers. The outcomes of 
interest are students’ reading and numeracy test scores in grade 9, 
which capture students’ skills in these domains 1 y after starting 
lower secondary school (grades 8-10; see SI Appendix, sections A 
and B, for details on the schooling system and national test scores 
in Norway). Students’ test scores are standardized within each year 
in the full population of Norwegian students to have a mean of zero 
and a SD of one. We measure students’ and their parents’ genetic 
predisposition to educational attainment with a polygenic index for 
educational attainment PGIEA and quantify school quality through 
school VA measures (VAd with d ∈ {reading, numeracy}). VAd is 
constructed using the full population of Norwegian students. For 
our main analysis, we standardize PGIEA and VAd in our estimation 
sample to have a mean of zero and a SD of one.

  Table 1  shows descriptive statistics for our analysis sample com-
prising 30,939 children with complete data on all relevant out-
comes, treatment, and control variables. While our analysis sample 
of genotyped parent–child trios is comparable to the overall MoBa 
sample, MoBa participants are positively selected on socioeconomic 
background characteristics and are therefore not fully representative 

Table 1.   Summary statistics
Analysis sample N = 30,939 MoBa (All) N = 56,533 Population N = 331,591

Variable Mean SD Min Max Mean SD Mean SD

 Birth year 2004.9 1.6 2002 2008 2004.8 1.6 2004.5 1.7

 Female 0.5 0.5 0.0 1.0 0.5 0.5 0.5 0.5

 Migration background 0.1 0.3 0.0 1.0 0.1 0.3 0.2 0.4

 Education (Father) 14.6 2.6 7.0 21.0 14.4 2.7 13.7 2.9

 Education (Mother) 15.1 2.3 9.0 21.0 15.0 2.4 14.1 2.9

 Inc. rank (Father) 58.5 25.6 0.0 99.0 57.1 26.2 50.9 28.3

 Inc. rank (Mother) 61.0 25.4 0.0 99.0 59.9 25.7 51.5 27.6

 Age (Father) 32.9 5.1 18.0 65.0 33.1 5.3 33.2 6.0

 Age (Mother) 30.5 4.4 16.0 47.0 30.6 4.5 30.2 5.1

 Reading (Grade 8) 0.3 0.9 -3.2 2.4 0.2 0.9 0.1 1.0

 Numeracy (Grade 8) 0.3 0.9 -2.5 2.5 0.2 1.0 0.0 1.0

 English (Grade 8) 0.2 1.0 -2.4 2.2 0.1 1.0 0.0 1.0
This table shows descriptive statistics. The first panel focuses on the main analysis sample, i.e., MoBa cohorts 2002-2007 with PGIEA data for biological mothers, fathers, and their children. 
The second panel also includes MoBa participants with missing PGIEA data for either mothers, fathers, or their children. The third panel focuses on the entire Norwegian population 
born 2002-2007, irrespective of whether they have participated in MoBa. Parental income ranks are calculated in the full population. Test scores for reading, numeracy, and English are 
standardized on the full population. Data: Own calculations based on MoBa and Norwegian registers. Note that, while 2007 was the latest complete birth cohort available during data 
construction, a small number of children born in 2008 (n = 13) also met all inclusion criteria and were included in the analytical sample.D
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of the overall Norwegian population. However, this selection does 
not compromise the internal validity of our estimates or their causal 
interpretation. ﻿

Validation of Identification Assumptions.
Exogenous variation in polygenic indices (PGIEA). Causal identification 
of gene–environment interactions requires exogenous variation in 
both genetic factors and environmental exposures (20). In the 
absence of exogenous variation in children’s education-linked 
genetics (PGIEA), estimates of genetic effects and the corresponding 
gene–environment interaction will be confounded by indirect 
genetic effects from parents and population stratification (21). 
We achieve exogenous variation in PGIEA by leveraging the 
availability of genetic trios in MoBa. By analyzing children’s PGIEA 
while controlling for maternal and paternal PGIEA, we isolate 
the component of children’s genetic variation that is randomly 
allocated during meiosis. This within-family genetic variation 
approach enables causal identification of genetic effects (22).
Fig. 1 provides evidence supporting the exogeneity of the within-
family PGIEA variation used in our study. Specifically, it shows 
correlations between students’ PGIEA and family characteristics 
that may influence the educational outcomes of children, such 
as parents’ education and income. The dark blue dots show 
correlations without controls for parental PGIEA. Many of the 
correlations are positive and significantly different from zero—a 
pattern consistent with indirect parental genetic effects. The 
orange dots show the same correlations after controlling for 
parental PGIEA. Notably, all correlations with family characteristics 
converge to zero and become statistically indistinguishable from 
zero. In line with our expectations, the residual within-family 
genetic variation of PGIEA is not confounded with other family 
characteristics that may influence children’s educational outcomes, 
suggesting a causal interpretation of our estimated genetic effects. 
Fig. 1 also demonstrates that PGIEA and VAd are not correlated 

with each other after conditioning on parental PGIEA. The absence 
of such gene–environment correlations suggests that we have 
sufficient independent variation in PGIEA and VAd to separately 
identify genetic effects, school effects, and the gene–environment 
interaction of interest.
Exogenous variation in school VA. VA models estimate the causal 
effect of schools on student outcomes by comparing students’ 
academic progress relative to comparable peers at different 
schools (see Angrist et al. (17) for a recent overview article). The 
core identification challenge is to isolate VAd from other factors 
that contribute to student outcomes. For example, it is well 
documented that school enrollment is not random but stratified 
by factors such as student ability, parental socioeconomic status, 
and ethnicity (3, 23, 24). As these factors contribute to student 
outcomes, uncontrolled comparisons of educational outcomes 
across schools will yield biased estimates of VAd. In some settings, 
researchers can exploit random student assignments based on 
lotteries to estimate VAd net of confounding factors (3, 25). In 
the absence of random assignment, however, we can mimic such 
experimental variation using observational data following the 
protocols suggested by Chetty et al. (26) and Jackson et al. (2). 
In particular, we calculate VAd while conditioning on observable 
differences across students, including differences in family 
socioeconomic status and prior student test scores. Therefore, 
the identification of school effects relies on the assumption that 
the predetermined characteristics are sufficient to control for 
selection into schools. Existing literature has documented that 
the inclusion of prior test scores usually satisfies this assumption 
(2, 26). Fig. 2 provides evidence supporting the predictive validity 
and the exogeneity of VAd in our study. In Panel (a), we assess 
whether our measure of school VAd captures relevant variation in 
student outcomes. To this end, we regress the outcome of interest, 
i.e., student’s reading test scores in grade 9, on the corresponding 
VAd measure of their school. The slope is precisely estimated and 
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Fig. 1.   Validation of the exogeneity of within-family PGIEA variation. This plot shows correlations of PGIEA with children’s observable sociodemographic background 
characteristics and school value-added (VAd) in our analysis sample (N = 30,939). Dark blue circles show uncontrolled population-level correlations with children’s 
PGIEA. Orange circles show the corresponding within-family correlations after controlling for PGIEA of mothers and fathers. Whiskers show 95% CI. SE are 
heteroskedasticity robust. Data: Own calculations based on MoBa and Norwegian registers.D
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cannot be statistically distinguished from one: A one-unit increase 
in VAd, on average, increases reading test scores by one unit as 
well. In the VA literature, this property is often called “forecast 
unbiasedness” and establishes the high predictive validity of VAd 
for the corresponding student outcome (17, 26).

   In Panel (B ), we assess whether this relationship is potentially 
confounded by selection based on unobserved characteristics. To that 
end, we predict student test scores from a variety of variables that we 
do not control for in the construction of VAd   and regress these pre-
dicted test scores on VAd  . A coefficient different from zero would 
suggest that unobserved variables determine selection into schools, 
and we would have to reject the exogeneity of VAd  . However, the 
slope is flat and very close to zero: A one-unit increase in school VAd   
decreases predicted reading test scores by 0.015 SD. Similar to find-
ings in other studies ( 2 ,  18 ,  26 ), this suggests that there is negligible 
bias in our VA estimates after conditioning on a set of controls, 
including students’ prior test scores. In Panels (C ) and (D ), we repeat 
the same exercise for numeracy test scores. The results are almost 
identical, further supporting our identification assumption.  
Metric properties of outcomes. Several measurement problems can 
create spurious gene–environment interactions, e.g., test scores 
having ceiling effects; restricted range of test scores at higher 
VAd levels, or curved relationships being misspecified as linear 
(20, 27–29). While the raw test scores show some negative skew 
(SI Appendix, Fig. S2), the standardized test scores used in our 
analyses do not display problematic skew or ceiling effects. We 
find that test scores display only slightly lower variance at higher 
school quality levels (SI Appendix, Fig. S3), and that relationships 
between key variables of interest are linear (SI Appendix, Fig. S4).

Gene–environment interaction.
Reading. Table  2 documents that more effective schools have 
higher relative impacts on the reading outcomes of children with 
a low PGIEA.

In our base model without any controls (column 1), a 1 SD increase 
in children’s PGIEA is associated with 0.304 SD higher reading 
scores, while a 1 SD increase in VAd is associated with 0.091 SD 
higher reading scores. The interaction between PGIEA and VAd is 
negative and significant at the 5% level, suggesting that the effect 
of children’s genetic predispositions captured by their PGIEA on 
their reading skills is moderated by school quality. However, these 
estimates lack a causal interpretation due to potential confounding 
by indirect genetic effects and nonrandom selection into schools.
In column (2), we incorporate controls for parental PGIEA and 
genotyping protocols. In this model, a 1 SD increase in PGIEA 
increases reading test scores by 0.230 SD. The drop in the 
effect of PGIEA in comparison to column (1) is consistent with 
established literature that suggests that 40 to 50% of the raw PGIEA 
associations with academic skills reflect indirect genetic effects and 
population stratification (21, 30, 31). After controlling for PGIEA 
of parents, our estimates rely on random within-family variation 
only and are not confounded by other family characteristics that 
may correlate with educational outcomes. The effect of PGIEA has 
a causal interpretation.
In column (3), we incorporate the full set of controls used in 
VAd construction, including lagged test scores and school-
cohort characteristics (17). The effect of PGIEA remains stable, 
highlighting its causal interpretation after accounting for the 
PGIEA of parents. However, the effect of VAd drops from 0.091 to 
0.052. This drop is expected since controlling for parental PGIEA is 
insufficient to control for selection into schools. After accounting 
for the expanded set of covariates, our estimates of school effects 
account for selection into schools and are not confounded by 
other family characteristics that may correlate with educational 
outcomes. The effect of VAd has a causal interpretation.
In column (3), we can give the base effects of both PGIEA and 
VAd a causal interpretation. However, following the arguments of 
Keller (32) and Feigenberg et al. (33), it is still an open question 

A B

C D

Fig. 2.   Validation of the exogeneity of VAd. This figure shows the association between VAd and children’s observable and predicted test scores in reading (Panels 
[A] and [B]) and numeracy (Panels [C] and [D]) in grade 9 for the full population of cohorts 1997-2007 (N = 508,615). All variables are residualized from control 
variables Z (Materials and Methods). VAd is reported in raw scores, i.e., values that have not been standardized. Predicted test scores are constructed from 
children’s reading and numeracy test scores in grade 5, maternal and paternal earnings rank at age 6, and maternal and paternal age at birth. Scatter plots are 
constructed by binning the VAd distribution into 100 percentiles. Regression slopes are estimated on the full data. SE are clustered at the school level. Data: 
Own calculations based on Norwegian registers.
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whether we can give the gene–environment interaction a causal 
interpretation as well. Since our treatment variables are considered 
exogenous conditional on a set of covariates, we need to include 
the full set of two-way interactions of these covariates with 
the variables of interest (PGIEA, VAd) to ensure that the gene–
environment interaction is not picking up spurious correlations. 
Importantly, however, when including these two-way interactions, 
the researcher faces a bias–variance tradeoff. On the one hand, the 
integration of two-way interactions is necessary for the unbiased 
estimation of the gene–environment interaction if these two-
way interactions are correlated with the outcome and the gene–
environment interaction of interest (32, 33). On the other hand, 
the two-way interactions may lead to a loss of statistical power 
and inflate SE, particularly when degrees of freedom decrease 
substantially, R2 increases minimally, or collinearity exists between 
interaction terms (33, 34).
In column (4), we augment our regression model by adding 
all two-way interactions of PGIEA and VAd with the vector of 
covariates X. If our gene–environment interaction of interest was 
confounded by other interactions between our variables of interest 
and the controls, we would expect the point estimate of PGIEA 
× VAd in column (4) to diverge from the corresponding estimate 
in column (3). However, this is not the case. The estimate of the 
gene–environment interaction remains stable, but the SE increase 
from 0.005 to 0.007. This suggests that the magnitude of the 
interaction between the PGIEA and VAd identified in column (3) 
is unbiased but becomes nonsignificant in column (4) due to the 
increased variance of the estimates. In view of the stability of the 
point estimates and in line with the arguments put forward by 
Feigenberg et al. (33), we focus on the estimates in column (3) as 
our preferred estimates.

Our preferred estimate for the gene–environment interaction in 
column (3) suggests that a 1 SD increase in PGIEA increases the 
reading test scores of students in the average school in Norway 
by 0.231 SD. For students attending a school 1 SD above the 
country average, the impact of a 1 SD increase in PGIEA decreases 
by approximately 6% [1−(0.231−0.013)/0.231]. This estimate is 
statistically significant at the 5% level.
Theoretically, PGIEA and VAd could be complements or substitutes 
for student learning. If they were complements, school quality 
(VAd) would magnify advantages based on PGIEA; if they were 
substitutes, VAd would compensate for disadvantages based on 
PGIEA. Our results point to the substitutability of PGIEA and VAd 
as input factors for students’ reading test scores. Fig. 3 illustrates 
genetic gradients across Norwegian schools of varying quality, 
revealing whether this substitutability stems from gains at the 
bottom or losses at the top of the PGIEA distribution. The genetic 
gradients are flatter in higher-quality schools. This pattern suggests 
that in higher-quality schools, genetic differences between children 
matter less because schools compensate children with lower PGIEA. 
Reversely, the impact of genetic differences among students on 
their test scores is more pronounced in lower-quality schools.
Numeracy. We repeat the previous analysis with numeracy 
test scores as the outcome of interest. Fig. 3 and SI Appendix, 
Table S1 suggests that there is no gene–environment interaction 
for numeracy scores. In our preferred specification, a 1 SD increase 
in PGIEA is associated with 0.239 SD higher numeracy scores, 
while a 1 SD increase in VAd is associated with 0.039 SD higher 
numeracy scores. The point estimate for the gene–environment 
interaction is 0.000, with an associated 95% confidence band of 
[−0.0078, 0.0078]. Therefore, this null finding is precise enough 
to exclude magnitudes that are approximately half the size of 

Table 2.   Gene–environment interaction for reading and numeracy test scores
(1) (2) (3) (4)

 Panel (a): Reading (Grade 9)

﻿PGIEA﻿﻿ 0.304*** (0.006) 0.230*** (0.008) 0.231*** (0.005) 0.231*** (0.005)

﻿VAd﻿﻿ 0.091*** (0.014) 0.090*** (0.013) 0.052*** (0.007) 0.050*** (0.007)

﻿PGIEA﻿ × VAd﻿﻿ −0.020* (0.008) −0.020* (0.008) −0.013* (0.005) −0.013 (0.007)

 Genetic controls × × ✓ ✓

 School quality controls × × ✓ ✓

 2-way interactions (PGIEA﻿, VAd﻿, X) × × × ✓

 R2﻿ 0.096 0.104 0.654 0.657

 N 30,939 30,939 30,939 30,939

 Skill persistence ρ – – 0.462*** (0.006) 0.460*** (0.006)

 Panel (b): Numeracy (Grade 9)

﻿PGIEA﻿﻿ 0.314*** (0.006) 0.238*** (0.008) 0.239*** (0.004) 0.239*** (0.004)

﻿VAd﻿﻿ 0.076*** (0.013) 0.075*** (0.013) 0.039*** (0.005) 0.040*** (0.005)

﻿PGIEA﻿ × VAd﻿﻿ −0.005 (0.007) −0.006 (0.007) −0.000 (0.004) 0.001 (0.005)

 Genetic controls × × ✓ ✓

 School quality controls × × ✓ ✓

 2-way interactions (PGIEA﻿, VAd﻿, X) × × × ✓

 R2﻿ 0.102 0.109 0.738 0.740

 N 30,939 30,939 30,939 30,939

 Skill persistence ρ – – 0.702*** (0.004) 0.703*** (0.004)
This table shows estimates for the effects of PGIEA and VAd on children’s reading scores (Panel [a]) and numeracy scores (Panel [b]) in grade 9, as well as the corresponding gene–environ-
ment interaction. Genetic controls include the PGIEA of biological mothers and fathers, and categorical variables for the genotyping batch. School quality controls include lagged grade 
8 test scores in reading, numeracy, English, maternal and paternal years of education, second-generation migration status, gender, birth cohort, birth order, number of siblings, and 
school-cohort averages of all previous controls. Two-way interactions include all interactions of PGIEA and VAd with the aforementioned controls. Skill persistence ρ indicates the estimate 
for lagged test scores in reading/numeracy (grade 8), which is estimated in the model as part of the child controls. SE (in parentheses) are clustered at the school level. Significance levels: 
*P < 0.05, **P < 0.01, ***P < 0.001. Data: Own calculations based on MoBa and Norwegian registers.
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the point estimate for the gene–environment interaction in the 
reading domain (0.013).

Discussion

Summary. We investigated whether schools can mitigate birth-
related educational inequalities by integrating exogenous school 
VA measures with the natural lottery of within-family genetic 
variation. Using this stringent causal inference design, we 
found compelling evidence of a gene–environment interaction 
influencing reading skill development (though not numeracy) 
even within the narrow time window of one school year (grade 

8, ages 13 to 14). Our results suggest that investments in school 
quality can promote equitable skills development by effectively 
narrowing gaps in reading test scores between students with 
different genetic predispositions. Notably, these findings also 
reveal a double disadvantage: The skill development gap between 
children in low versus high-quality schools is even larger for those 
with less genetic predisposition to education.

Reading versus Numeracy. We estimate that increases in school 
quality reduce the impact of PGIEA on reading test scores; however, 
we do not find a gene–environment interaction for numeracy 
test scores. This result is likely related to the higher persistence of 

Fig. 3.   Gene–environment interactions for reading and numeracy test scores. This figure shows binned scatter plots for the relationship between PGIEA and test 
scores in grade 9 by quintile of the outcome-specific VAd distribution. The Top panel shows results for reading test scores; the Bottom panel shows results for 
numeracy test scores. Scatter plots are constructed by grouping the PGIEA distribution into 15 bins. Regression slopes are estimated on the full data, conditioning 
on controls matching the focal models (see column 3, Table 2 for reading and numeracy; Materials and Methods). Data: Own calculations based on MoBa and 
Norwegian registers.
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numeracy skills during this developmental period. Examining our 
preferred specification (column 3 of Table 2) gives an indication 
of the persistence of skills. In this specification, we control for 
subject-specific lagged test scores and list the coefficient of this 
control at the bottom of the table (ρ). If ρ = 0, past achievement 
does not impact current performance, giving room for new inputs 
to shape outcomes. Reversely, if ρ = 1, skills are highly persistent, 
suggesting that new inputs have less scope to shape children’s skills. 
The corresponding coefficients are 0.462 (SE 0.006) for reading 
and 0.702 (SE 0.004) for numeracy test scores. These estimates 
suggest that numeracy test scores of adolescents in Norway are 
significantly more persistent than reading test scores, giving high-
quality schools less scope to level up the numeracy skills of children 
with lower PGIEA relative to their high-PGIEA peers.

Magnitude of Effects. We estimate that a 1 SD increase in 
school quality reduces the impact of a 1 SD increase of PGIEA 
on student outcomes in reading by approximately 6%. To gauge 
the magnitude of this effect, it is essential to emphasize that this 
treatment effect captures students’ exposure to high- or low-quality 
schools for only one school year (grade 8). Lower-secondary 
education in Norway lasts for 3 y (grades 8-10), with students 
usually staying in their initial neighborhood school throughout 
this period [see SI  Appendix, section A and Kirkebøen (18)]. 
Therefore, if one were to assume constant and additive treatment 
effects of VAd across grades 8-10, a 1 SD increase in school 
quality would reduce the impact of PGIEA on student outcomes 
in reading by approximately 18% over the total duration of lower 
secondary school. We are aware that the assumption of grade-
constant and additive treatment effects is arguably strong and in 
need of verification by future research. However, it is interesting 
to note that the implied effect size of this back-of-the-envelope 
extrapolation is consistent with results from Arold et al. (14), who 
find that a 1 SD increase in high school quality in the United 
States (grades 9-12) decreases the impact of PGIEA on educational 
attainment by approximately 19%.

Potential Mechanisms. The gene–environment interaction 
identified here can be further understood in the context of 
theoretical frameworks from economics and developmental 
psychology. The economics literature on skill formation often 
conceptualizes student outcomes as a function of students’ initial 
skills, school inputs, and family inputs, where families adjust 
their behavior depending on students’ initial skills and school 
quality (35, 36). Similarly, developmental psychology frameworks 
propose that development and learning are a product of dynamic 
interplay between individual biopsychological and social processes 
(37), where an existing genetic diathesis/vulnerability can be 
compensated for, controlled, or triggered by proximal social 
processes (38). Our finding that genetic factors matter less in high-
quality schools is consistent with the concept of substitutability 
from economics, as well as the compensation and diathesis-stress 
models (13, 38, 39) from developmental psychology, contrasting 
with bioecological models where social advantage increases genetic 
expression (37).

 The finding that differences in PGIEA   have less impact on the 
development of reading skills in higher VAd   schools could be 
explained by both direct and indirect mechanisms. First, students 
with lower PGIEA   may gain directly  from attending higher-quality 
schools. Emerging evidence shows that schools and teachers in 
industrialized countries focus on the lower parts of the achieve-
ment distribution, suggesting that they attach a higher weight to 
the learning of disadvantaged students ( 40 ). Therefore, students 
with lower PGIEA   who attend better schools receive relatively more 

and/or higher-quality investments than their peers with higher 
﻿PGIEA  , which could explain the negative gene–environment inter-
action in this study. This mechanism assumes that Norwegian 
educators distribute instructional resources unequally across stu-
dents within the same school. However, even without this assump-
tion, the negative gene–environment interaction can be explained 
by diminishing returns to educational inputs. Students with lower 
﻿PGIEA   may have more room for improvement and, consequently, 
may gain more from attending a better school. Notably, compen-
sation and triggering are at the ends of a continuum: Just as 
enriched learning environments may compensate for genetic dis-
advantage, lower-quality schools could be stressful environments 
that “trigger” genetic predispositions linked to low educational 
attainment and hinder the accumulation of reading skills *  

 Second, students with lower PGIEA   may gain indirectly  from 
attending high-quality schools through family adjustments to 
school quality and children’s PGIEA  . These indirect mechanisms 
are more complex as they combine the effects of different inputs 
on student learning with the behavioral responses of parents. For 
example, if families prioritize supporting children with higher 
﻿PGIEA   and family and school inputs act as substitutes in fostering 
learning, then the effect of additional family inputs received by 
high- PGIEA   students becomes weaker in high- VAd   schools. This 
could contribute to the negative gene–environment interaction 
we observed. Alternatively, if families decrease their investment 
with increases in school quality, and family inputs and PGIEA   work 
as complements in learning, then the effect of decreased family 
inputs received by students in high- VAd   schools will be less pro-
nounced for low- PGIEA   students. This could also contribute to 
the negative gene–environment interaction observed in this study.  

Limitations. Our gene–environment interaction findings are 
specific to genetic variants captured by PGIEA, derived from 
a genome-wide association study conducted primarily in 
populations of European ancestries. This represents only a subset 
of total genetic influences on reading ability. Therefore, while we 
demonstrate that school quality moderates genetic effects shared 
between reading and PGIEA, we cannot determine whether all 
genetic influences on reading are similarly affected by school 
environments. Moreover, the notion that within-family polygenic 
index associations can be interpreted causally has been subject 
to debate; a key caveat being that within-family associations are 
causal for families heterozygous at relevant variants but may not 
generalize (41, 42). Additionally, while the standardized outcomes 
we analyzed were not skewed, the raw test scores showed negative 
skew that may indicate measurement limitations at the upper end 
of the scale, and we cannot rule out that this could contribute to 
the interaction effects we observe.

 Furthermore, we emphasize that our results are context depend-
ent. High- VAd   schools can increase average student outcomes by 
different policies that focus on low-ability students, high-ability 
students, or broad policies that are equally effective for all students 
regardless of their ability ( 43 ,  44 ). These practices may vary across 
countries, grades, subjects, and schools. We find that lower sec-
ondary schools in Norway with high- VAd   increase the reading 
scores of all students, but with higher relative gains of low- PGIEA   

﻿*  Theoretically, the existence of this effect is ambiguous. Extensive literature has emphasized 
the importance of dynamic complementarities in skill formation, which suggests higher 
gains by students with higher initial skills ( 55 ). However, consistent with our results, various 
recent papers have suggested that higher quality schools have more positive effects on 
students from disadvantaged socioeconomic backgrounds and who have higher genetic 
predisposition to ADHD and low educational attainment ( 13 ,  14 ,  16 ). Other studies have 
obtained inconclusive or null findings ( 11 ,  12 ). Some of these inconsistencies could be 
explained by differences in outcome selectivity (i.e., national tests versus degree comple-
tion) and/or differences across institutional contexts ( 56 ).D
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students ( Fig. 3 ). The resulting negative interaction of PGIEA   and 
﻿VAd   may be attenuated or even reversed in contexts where schools 
put a stronger emphasis on the learning of high-ability students. 
Such differences may even emerge within the same country, for 
example, if a school system’s goals shift from equalizing students’ 
opportunities in lower grades to differentiating students at higher 
grades. Therefore, we encourage caution when extrapolating our 
results to other contexts.  

Future Research. This study forges several interesting avenues 
for future research. Ideally, investigations aiming to distinguish 
between different mechanisms involved in the gene–environment 
interaction that we identified should combine the data prerequisites 
for causal gene–environment interplay studies with detailed data 
on school practices and parental inputs. The former will allow 
us to understand the characteristics of high-quality schools and 
to study which features of these schools make them particularly 
beneficial to students with lower PGIEA (see also our discussion 
on direct gene–environment effects). The latter will allow us 
to understand how mothers and fathers adapt their parenting 
strategies in response to their children’s PGIEA and the quality of 
their schools, and whether particular parental inputs are especially 
beneficial to students with lower PGIEA (see also our discussion 
on indirect gene–environment effects).

 The relevant school characteristics and parental inputs are highly 
multifaceted and are unlikely to be captured in a single dataset. School 
quality is likely to consist of diverse pedagogical, organizational, cul-
tural, relational, financial, and physical aspects. Similarly, parental 
inputs may consist of different time and monetary investments as 
well as parenting styles. However, the increased availability of molec-
ular genetic data and the integration of these data with linked register, 
survey, and cohort study datasets paves the way for researchers to 
address these important questions convincingly in the future.   

Materials and Methods

Data.
The Norwegian Mother, Father, and Child Cohort Study (MoBa). MoBa is a pro-
spective population-based pregnancy cohort study conducted by the Norwegian 
Institute of Public Health (19). Pregnant women were recruited from across Norway 
from 1999 to 2009. The women consented to initial participation in 41% of the 
pregnancies. Of the fathers invited to participate, 83% consented. The total cohort 
includes approximately 114,500 children, 95,200 mothers, and 75,200 fathers. 
MoBa participants were linked to administrative register data through the Norwegian 
national ID number system. Analyses are conducted on MoBa children born 2002-
2008 with grade 9 national test scores in reading and numeracy, complete data for 
genome-wide genotyping [see SI Appendix, section C and Corfield et al. (45) for 
details on genotyping and genetic quality control in MoBa], information on VAd in 
their school-cohort cell, and nonmissing control variables (N = 30,939).
Norwegian register data. We estimate VAd for standardized test scores in reading 
and numeracy in grade 8. Since standardized tests are conducted at the beginning 
of the academic year, we can use test scores in grades 8 and 9 to measure student 
progress in grade 8, i.e., the first year of lower secondary school (SI Appendix, 
sections A and B). We construct VAd using register data on the entire Norwegian 
student population in birth cohorts 1997-2007 (approximately 60,000 per cohort). 
The earliest birth cohort that completed comparable standardized tests in grades 8 
and 9 in reading and numeracy is 1997. While 2007 was the latest complete birth 
cohort available during data construction, a small number of children born in 2008 
(n = 13) also met all inclusion criteria and were included in the analytical sample.

Treatment Variables.
Polygenic index for educational attainment (PGIEA). We used beta weights from 
the largest genome-wide association study of educational attainment to date 
(“EA4”), excluding MoBa (46). Polygenic indices were calculated using LDPred 
v.1 (47), a Bayesian approach that uses a prior on the expected polygenicity of 

a trait (assumed fraction of nonzero effect markers) and adjusts for linkage dis-
equilibrium (LD) based on a reference panel to compute weights for individual 
single nucleotide polymorphisms (SNPs). LD adjustment was performed using the 
MoBa genotype data as LD reference panel. The weights were estimated based on 
the heritability explained by the markers in the GWA summary statistics and the 
assumed fraction of markers with nonzero effects. PGIEA were computed based 
on these weights with the –score command in plink2 (48).
School value-added (VAd). Consider educational outcome Y in subject d of stu-
dent i attending school j in cohort c. We model this educational outcome as a 
function of individual student characteristics Z and true school quality VAd:

Yd
ijc
= �dZ

ijc
+ VAd

jc
+ �d

ijc
.

In our setting, Z comprises lagged grade 8 test scores in numeracy, reading, 
English, maternal and paternal years of education, second-generation migra-
tion status, gender, birth cohort, birth order, number of siblings, and school-
cohort averages of all previous controls. See also SI Appendix, Table S1 where 
we provide an overview of all control variables used for the estimation of VAd 
and in our main analysis. Note that the specification of Z goes beyond lagged 
test scores in the outcome of interest by controlling for lagged test scores in 
three subjects, as well as the corresponding aggregates at the school-cohort 
level. This practice is motivated by methodological research showing the neces-
sity of additional measures of prior achievement for unbiased VAd estimates 
(49, 50). These papers also suggest that additional controls for socioeconomic 
background are usually unnecessary after accounting for such a rich set of 
controls for prior achievement. We nevertheless include these controls in Z to 
err on the side of caution.

Note that true VAd is a latent variable captured in the composite error term 
�d
ijc
= VAd

jc
+ �d

ijc
 of Eq. 1. We can construct an estimate of VAd of school j in cohort 

c by estimating Eq. 1 and calculating the cohort-school average in the resulting 
residuals:

V̂A
d

jc
=

1

Nd
jc

∑

i

(

�d
ijc

)

,

where Nd
jc

 captures the number of students of cohort c in school j.
We want to use estimates of VAd in regression models to explain student 

outcomes. However, we cannot explain student outcomes of school j in cohort 
c using VAd estimates for the same school cohort because of the mechanical 
relationship between the dependent variable Y and the VAd estimate (Eq. 1). 
For example, a student with a high reading test score will simultaneously push 
up the corresponding estimate of VAd in their school-cohort cell. This mechani-
cal link is particularly pronounced if school-cohort cells are small. To break this 
mechanical relationship, we predict school quality in school j of cohort c from all 
neighboring cohorts using an empirical Bayes procedure [see Walters (51) for a 
recent overview article]:

VAd
jc
=

∑

1≤c�≤C , c�≠c
� d
jc�

(

V̂A
d

jc�

)

,

where �  are weights selected to minimize forecast errors. Similar to Chetty et al. 
(26), we use all neighboring cohorts and not just preceding cohorts to increase 
the precision of the estimates. Therefore, our final estimate of VAd is the best 
linear predictor of school quality for cohort c in school j from all preceding and 
subsequent cohorts who attended this school while excluding the cohort itself to 
avoid biased estimates through reversed causality. This procedure yields a noisy 
estimate of VAd. Furthermore, it is well known that measurement error in the 
independent variables leads to attenuation bias in the relevant coefficients in 
downstream analyses. The empirical Bayes procedure takes care of this concern. 
Specifically, it chooses weights �  such that noisy estimates are shrunk to the mean 
in proportion to their signal-to-noise ratio. It can be shown analytically that this 
weighting is the exact inverse of attenuation bias in error-in-variables regres-
sions—see Walters (51) for an outline of the formal argument. Therefore, while 
we estimate VAd with error, our regressions recover estimates of school effects 
that are not afflicted by attenuation bias. We note that this conclusion only holds 
when standardizing VAd with respect to its true SD, which is unobserved. Therefore, 
we estimate the true SD by the square root of the 1-y lag autocovariance, which 

[1]

[2]

[3]
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provides a lower bound on the true within-year SD of VAd (26, 52). We use this 
estimate for all standardizations of VAd. In SI Appendix, Tables S2 and S3, we 
also present robustness analyses based on the observed SD, which provide an 
overestimate of the true within-year SD of VAd.

In all our analyses, we use VAd from Eq. 3 as our estimate of VAd. However, 
to simplify the notation, we omit the overbar and refer to this estimate as VAd 
in the following. We estimate VAd using the vam command (53) in Stata 18.0.

The outlined procedure yields an unbiased estimate of VAd if there is no selec-
tion into schools based on factors not captured in observable characteristics Z. 
Following Chetty et al. (26), we can evaluate the plausibility of the exogeneity 
assumption using “as-if-unobservable” variables. Specifically, we treat students’ 
grade 5 reading and numeracy scores, fathers’ and mothers’ earnings rank at age 
6, and fathers’ and mothers’ age at birth as unobserved variables that we do not 
include in the control vector Z. In turn, we can test whether they confound the 
relationship between VAd and student outcomes.

The validation exercise consists of three steps and is performed in Stata 18.0 
using the regress command. First, we separately regress each of our outcomes 
of interest and the as-if-unobservables on Z and store the residuals. This step 
ensures that we only exploit variation that is not captured by Z. Second, we 
regress each (residualized) outcome on all (residualized) “as-if-unobservables” 
and store the predicted outcomes. This step creates a summary statistic for 
variation in the (residualized) outcomes that is accounted for by our (residu-
alized) “as-if-unobservables.” It captures variation in the outcomes of interest 
that is not accounted for by Z and which, therefore, is a potential source for 
omitted variable bias. Finally, we regress this summary statistic on VAd. If VAd 
is substantially associated with the predicted outcomes, then this indicates 
that there is selection into schools based on “as-if-unobservables” (i.e., grade 
5 test scores, parental earnings rank, and parental age at birth). The results are 
shown in Fig. 2.

While the results of this validation exercise support the satisfaction of the 
“selection-on-observables” assumption in our setting, we acknowledge that there 
remains the risk of confounding through some other unobservable variable that 
is correlated with student outcomes and school quality but not captured in Z. 
However, existing methodological literature generally shows that observational 
VA measures like the ones used in this paper by-and-large concur with VA meas-
ures using (quasi)-experimental variation once they account for lagged student 
test scores in Z (17, 18).†

VAd can be interpreted as a summary statistic for all school factors contributing 
to students’ academic progress in skill dimension d. While VAd captures persistent 
differences in quality across schools, it does not capture within-school differences 
in quality due to, for instance, teacher quality.

Analysis. We estimate the following model through ordinary least-squares and 
cluster SE at the level of schools j, using lm_robust in the estimatr R package (R 
version 4.2):

Yd
ijc
= �dPGIEA

ijc
+ �dVAd

jc
+ �d (PGIEA

ijc
× VAd

jc
) + �dX

ijc
+ �d

ijc
.

PGIEA and VAd are the variables of interest, X is a vector of control variables, 
and εd is the error term. αd, βd, and κd are the parameters of interest, identify-
ing the causal effects of PGIEA, VAd, and the corresponding gene–environment 
interaction.

Controls X include genetic controls, i.e., paternal and maternal PGIEA, and 
genotyping batch, and the vector of covariates Z used for the construction of 
VAd, i.e., lagged grade 8 test scores in reading, numeracy, English, maternal and 
paternal years of education, second generation migration status, gender, birth 
cohort, birth order, number of siblings, and school-cohort averages of all previous 
controls (SI Appendix, Table S1). Note that lagged test scores are a function of 
PGIEA. Therefore, they are “bad controls” for estimating genetic effects (34). To 
address this concern, we regress grade 8 test scores in reading, numeracy, and 
English on PGIEA and include the residuals from these regressions as our controls 
for lagged test scores. Hence, we control for all variations in lagged test scores 
uncorrelated with our variable of interest (PGIEA).
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