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In this paper, we investigate whether better schools can compensate for the effects
of children’s genetic differences. To this end, we combine data from the Norwegian
Mother, Father, and Child Cohort Study (MoBa) with Norwegian register data to esti-
mate the interaction between measures of children’s predisposition to education and
school quality. We use MoBa’s genetic data to compute polygenic indices for educational
attainment (PGI™). Importantly, MoBa includes genetic data on mother-father-child
trios, allowing us to identify causal genetic effects using within-family variation. We
calculate school value-added measures from Norwegian register data, allowing us
to causally estimate school quality effects. Leveraging the advantages of both data
sources, we provide a causally identified study of gene—environment interactions in
the school context. We find evidence for substitutability of PGI** and school quality
in reading but not numeracy: A 1 SD increase of school quality decreases the impact
of a 1 SD increase of PGI"" on reading test scores by 6%. The substitutability arises
through gains of students at the lower end of the PGI* distribution. This suggests
that investments in school quality may help reduce educational inequalities arising
from genetic differences between students.

education | gene-environment interaction | polygenicindices | school value-added

A core topic in the social sciences is the question of how well schools reduce the inequity
of birth. A substantial body of literature has explored the extent to which schools fulfill
their purpose of compensating for the effects of background differences among children
that lie beyond their control. Traditionally, this research has focused on inequalities in
school performance by socioeconomic status (SES), race, and gender (1-3). Here, we
consider whether schools compensate or reinforce the effects of children’s genetic
differences.

Genetic differences between children play a significant role in skills development, with
the twin study heritability for childhood school performance estimated at approximately
50% (4, 5). Notably, these genetic influences interact with social influences on academic
skills, such as family socioeconomic status (6) and the broader sociopolitical environment
(7). Evidence of gene—environment interactions is highly relevant to social policy; it
underscores the fact that environments do not affect all individuals equally. Interventions
that counteract genetic influences could serve as vital policy levers for fostering educa-
tional equity.

Given the potential policy implications, understanding gene—environment interac-
tions in educational settings is of particular interest. Traditional behavioral genetic study
samples limit research on genetic interactions with school environments because twins
usually attend the same school. Nonetheless, several twin studies have examined gene—
environment interactions within schools. Taylor et al. (8) found that genetic variance
in oral reading fluency increased with higher teacher quality (as measured by classroom
reading gains). Guimond et al. (9) found that genetic effects on academic achievement
were stronger when teachers used frequent praise and infrequent punishment—similarly
supporting genetic amplification rather than compensation in more advantaged educa-
tional settings.

The recent availability of polygenic indices (PGIs) has catalyzed research into how
genetic factors interplay with school environments. While twin studies capture total her-
itability, PGIs capture only a subset of genetic effects—those indexed by variants identified
in genome-wide association (GWA) studies, such as of educational attainment. In contrast
to twin studies, PGIs estimate genetic effects at the individual level, allowing for analyses
based on broader and more representative population samples. Importantly, the genetic
associations identified in GWA studies of educational outcomes reflect effects that emerge
within the particular normative social and educational contexts of study, rather than
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representing inherent genetic disadvantages. The variants associ-
ated with lower educational attainment might be different in dif-
ferent contexts.

The emerging PGI-based literature reveals complex patterns of
gene-by-school environment interactions. On one hand, Harden
et al. (10) found that schools with greater socioeconomic resources
appeared to compensate for genetic disadvantages in reducing
dropout from basic math while reinforcing genetic advantages in
the pursuit of advanced mathematics. Two other school-level stud-
ies yielded inconclusive or null results, finding that initial gene—
environment interactions disappear when accounting for scale
artifacts and school socioeconomic composition (11, 12). On the
other hand, two recent studies have found that higher-quality
schools compensate for the effects of differences in educational
attainment PGIs on test scores and years of schooling (13, 14).

These varying findings suggest that gene—environment interac-
tion findings in education research may depend on various factors
including: 1) the specific educational outcome examined—differ-
ent patterns may emerge for basic skill acquisition (such as decod-
ing in reading) versus advanced achievement (such as complex
problem-solving); 2) the developmental stage being studied, since
genetic and environmental influences may shift from elementary
through high school and beyond; 3) subject matter, as numeracy
and reading may each show distinct patterns of heritability and
environmental sensitivity; and 4) crucially, whether studies meas-
ure school quality in a way that captures schools’ effectiveness to
promote learning rather than simply reflecting the predetermined
characteristics of their student populations (e.g., student ability,
parental socioeconomic status, and ethnicity).

The primary challenge in existing research is the difficulty of
identifying exogenous variation in both genetic factors and school
quality measures. Estimates of gene—environment interactions
(GxE) are biased when genetic factors (G) and/or the environment
of interest (E) correlate with other variables that influence out-
comes. An effective approach to address the first source of bias is
by using within-family PGIs. Within-family variation in PGIs is
a random “genetic lottery” (15), meaning that effects cannot be
confounded by other family characteristics. This approach was
first adopted by Cheesman et al. (16) in the context of gene—envi-
ronment interactions within schools. However, the study lacked
a method for capturing exogenous variation in school quality and

Table 1. Summary statistics
Analysis sample N = 30,939

was limited in capturing only the school environments of children
participating in the cohort study. Without identifying causal
effects, we cannot conclude whether social advantages increase the
expression of genetic differences or instead support compensation
and diathesis stress models of child development, whereby social
advantages buffer genetic influences.

Here, we address these concerns by incorporating exogenous
variation in both genetics and environments. We leverage
within-family PGIs through parent—offspring genetic data in the
Norwegian Mother Father Child Cohort study (MoBa) and use
established school value-added (VA) indicators, integrating data
from Norwegian registers, thus encompassing all Norwegian chil-
dren in the cohort (17, 18). The Norwegian context and rich
educational data provide the ideal setting for validating our causal
gene—environment interaction approach.

Results

Analysis Sample. Our analysis is based on the Norwegian
Mother, Father, and Child Cohort Study (MoBa) (19), linked to
population-wide administrative records containing students’ national
standardized test scores and school identifiers. The outcomes of
interest are students’ reading and numeracy test scores in grade 9,
which capture students skills in these domains 1 y after starting
lower secondary school (grades 8-10; see SI Appendix, sections A
and B, for details on the schooling system and national test scores
in Norway). Students’ test scores are standardized within each year
in the full population of Norwegian students to have a mean of zero
and a SD of one. We measure students’ and their parents’ genetic
predisposition to educational attainment with a polygenic index for
educational attainment PG/ and quantify school quality through
school VA measures (VA” with 4 € {reading, numeracy}). VA” is
constructed using the full population of Norwegian students. For
our main analysis, we standardize PGI* and VA in our estimation
sample to have a mean of zero and a SD of one.

Table 1 shows descriptive statistics for our analysis sample com-
prising 30,939 children with complete data on all relevant out-
comes, treatment, and control variables. While our analysis sample
of genotyped parent—child trios is comparable to the overall MoBa
sample, MoBa participants are positively selected on socioeconomic
background characteristics and are therefore not fully representative

MoBa (All) N = 56,533 Population N = 331,591

Variable Mean SD Min Max Mean SD Mean SD

Birth year 2004.9 1.6 2002 2008 2004.8 1.6 2004.5 1.7
Female 0.5 0.5 0.0 1.0 0.5 0.5 0.5 0.5
Migration background 0.1 0.3 0.0 1.0 0.1 0.3 0.2 0.4
Education (Father) 14.6 2.6 7.0 21.0 14.4 2.7 13.7 29
Education (Mother) 15.1 23 9.0 21.0 15.0 2.4 14.1 2.9
Inc. rank (Father) 585 256 0.0 99.0 57.1 26.2 50.9 28.3
Inc. rank (Mother) 61.0 254 0.0 99.0 59.9 25.7 51.5 27.6
Age (Father) 329 5.1 18.0 65.0 33.1 5.3 33.2 6.0
Age (Mother) 30.5 4.4 16.0 47.0 30.6 4.5 30.2 5.1
Reading (Grade 8) 0.3 0.9 -3.2 24 0.2 0.9 0.1 1.0
Numeracy (Grade 8) 0.3 0.9 -2.5 2.5 0.2 1.0 0.0 1.0
English (Grade 8) 0.2 1.0 -2.4 2.2 0.1 1.0 0.0 1.0

This table shows descriptive statistics. The first panel focuses on the main analysis sample, i.e., MoBa cohorts 2002-2007 with PG/ data for biological mothers, fathers, and their children.
The second panel also includes MoBa participants with missing PG/* data for either mothers, fathers, or their children. The third panel focuses on the entire Norwegian population
born 2002-2007, irrespective of whether they have participated in MoBa. Parental income ranks are calculated in the full population. Test scores for reading, numeracy, and English are
standardized on the full population. Data: Own calculations based on MoBa and Norwegian registers. Note that, while 2007 was the latest complete birth cohort available during data
construction, a small number of children born in 2008 (n = 13) also met all inclusion criteria and were included in the analytical sample.
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of the overall Norwegian population. However, this selection does
not compromise the internal validity of our estimates or their causal
interpretation.

Validation of Identification Assumptions.

Exogenous variation in polygenic indices (PGI*). Causal identification
of gene—environment interactions requires exogenous variation in
both genetic factors and environmental exposures (20). In the
absence of exogenous variation in childrens education-linked
genetics (PG, estimates of genetic effects and the corresponding
gene—environment interaction will be confounded by indirect
genetic effects from parents and population stratification (21).
We achieve exogenous variation in PGI* by leveraging the
availability of genetic trios in MoBa. By analyzing children’s PGI™*
while controlling for maternal and paternal PGI™, we isolate
the component of children’s genetic variation that is randomly
allocated during meiosis. This within-family genetic variation
approach enables causal identification of genetic effects (22).
Fig. 1 provides evidence supporting the exogeneity of the within-
family PGI* variation used in our study. Specifically, it shows
correlations between students' PGI* and family characteristics
that may influence the educational outcomes of children, such
as parents education and income. The dark blue dots show
correlations without controls for parental PGI*!. Many of the
correlations are positive and significantly different from zero—a
pattern consistent with indirect parental genetic effects. The
orange dots show the same correlations after controlling for
parental PGI™, Notably, all correlations with family characteristics
converge to zero and become statistically indistinguishable from
zero. In line with our expectations, the residual within-family
genetic variation of PGI* is not confounded with other family
characteristics that may influence children’s educational outcomes,
suggesting a causal interpretation of our estimated genetic effects.
Fig. 1 also demonstrates that PG and VA? are not correlated

® Population PGI

Sociodemographic Measures

0.3

0.2

by

0.1

Correlation with Educational Attainment PGl

with each other after conditioning on parental PGI™. The absence
of such gene—environment correlations suggests that we have
sufficient independent variation in PG and VA” to separately
identify genetic effects, school effects, and the gene—environment
interaction of interest.

Exogenous variation in school VA. VA models estimate the causal
effect of schools on student outcomes by comparing students’
academic progress relative to comparable peers at different
schools (see Angrist et al. (17) for a recent overview article). The
core identification challenge is to isolate VA? from other factors
that contribute to student outcomes. For example, it is well
documented that school enrollment is not random but stratified
by factors such as student ability, parental socioeconomic status,
and ethnicity (3, 23, 24). As these factors contribute to student
outcomes, uncontrolled comparisons of educational outcomes
across schools will yield biased estimates of VA”. In some settings,
researchers can exploit random student assignments based on
lotteries to estimate VA net of confounding factors (3, 25). In
the absence of random assignment, however, we can mimic such
experimental variation using observational data following the
protocols suggested by Chetty et al. (26) and Jackson et al. (2).
In particular, we calculate VA while conditioning on observable
differences across students, including differences in family
socioeconomic status and prior student test scores. Therefore,
the identification of school effects relies on the assumption that
the predetermined characteristics are sufficient to control for
selection into schools. Existing literature has documented that
the inclusion of prior test scores usually satisfies this assumption
(2, 26). Fig. 2 provides evidence supporting the predictive validity
and the exogeneity of VA? in our study. In Panel (a), we assess
whether our measure of school VA? captures relevant variation in
student outcomes. To this end, we regress the outcome of interest,
i.e., student’s reading test scores in grade 9, on the corresponding
VA measure of their school. The slope is precisely estimated and

Within—family PGI

School Value Added Measures

0.3

0.2

0.1

Fig. 1. Validation of the exogeneity of within-family PG/ variation. This plot shows correlations of PG/™ with children’s observable sociodemographic background
characteristics and school value-added (VA% in our analysis sample (N =30,939). Dark blue circles show uncontrolled population-level correlations with children’s
PGI*. Orange circles show the corresponding within-family correlations after controlling for PGI* of mothers and fathers. Whiskers show 95% Cl. SE are
heteroskedasticity robust. Data: Own calculations based on MoBa and Norwegian registers.
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Fig. 2. Validation of the exogeneity of VA?. This figure shows the association between VA? and children’s observable and predicted test scores in reading (Panels
[A]l and [B]) and numeracy (Panels [C] and [D]) in grade 9 for the full population of cohorts 1997-2007 (N = 508,615). All variables are residualized from control
variables Z (Materials and Methods). VA? is reported in raw scores, i.e., values that have not been standardized. Predicted test scores are constructed from
children’s reading and numeracy test scores in grade 5, maternal and paternal earnings rank at age 6, and maternal and paternal age at birth. Scatter plots are
constructed by binning the VA? distribution into 100 percentiles. Regression slopes are estimated on the full data. SE are clustered at the school level. Data:

Own calculations based on Norwegian registers.

cannot be statistically distinguished from one: A one-unit increase
in VA, on average, increases reading test scores by one unit as
well. In the VA literature, this property is often called “forecast
unbiasedness” and establishes the high predictive validity of VA?
for the corresponding student outcome (17, 26).

In Panel (B), we assess whether this relationship is potentially
confounded by selection based on unobserved characteristics. To that
end, we predict student test scores from a variety of variables that we
do not control for in the construction of VA? and regress these pre-
dicted test scores on VA“. A coefficient different from zero would
suggest that unobserved variables determine selection into schools,
and we would have to reject the exogeneity of VA“. However, the
slope is flat and very close to zero: A one-unit increase in school VA”
decreases predicted reading test scores by 0.015 SD. Similar to find-
ings in other studies (2, 18, 26), this suggests that there is negligible
bias in our VA estimates after conditioning on a set of controls,
including students’ prior test scores. In Panels (C) and (D), we repeat
the same exercise for numeracy test scores. The results are almost
identical, further supporting our identification assumption.

Metric properties of outcomes. Several measurement problems can
create spurious gene—environment interactions, e.g., test scores
having ceiling effects; restricted range of test scores at higher
VA levels, or curved relationships being misspecified as linear
(20, 27-29). While the raw test scores show some negative skew
(SI Appendix, Fig. S2), the standardized test scores used in our
analyses do not display problematic skew or ceiling effects. We
find that test scores display only slightly lower variance at higher
school quality levels (S7 Appendix, Fig. S3), and that relationships
between key variables of interest are linear (S/ Appendix, Fig. S4).

Gene-environment interaction.

Reading. Table 2 documents that more effective schools have
higher relative impacts on the reading outcomes of children with
alow PGI*.

https://doi.org/10.1073/pnas.2511715122

In our base model without any controls (column 1), a 1 SD increase
in children’s PGI* is associated with 0.304 SD higher reading
scores, while a 1 SD increase in VA” is associated with 0.091 SD
higher reading scores. The interaction between PG and VA" is
negative and significant at the 5% level, suggesting that the effect
of children’s genetic predispositions captured by their PGI** on
their reading skills is moderated by school quality. However, these
estimates lack a causal interpretation due to potential confounding
by indirect genetic effects and nonrandom selection into schools.
In column (2), we incorporate controls for parental PGI* and
genotyping protocols. In this model, a 1 SD increase in PGI*
increases reading test scores by 0.230 SD. The drop in the
effect of PGI™ in comparison to column (1) is consistent with
established literature that suggests that 40 to 50% of the raw PGI*
associations with academic skills reflect indirect genetic effects and
population stratification (21, 30, 31). After controlling for PG
of parents, our estimates rely on random within-family variation
only and are not confounded by other family characteristics that
may correlate with educational outcomes. The effect of PGI* has
a causal interpretation.

In column (3), we incorporate the full set of controls used in
VA? construction, including lagged test scores and school-
cohort characteristics (17). The effect of PGI! remains stable,
highlighting its causal interpretation after accounting for the
PG of parents. However, the effect of VAY drops from 0.091 to
0.052. This drop is expected since controlling for parental PGI* is
insufficient to control for selection into schools. After accounting
for the expanded set of covariates, our estimates of school effects
account for selection into schools and are not confounded by
other family characteristics that may correlate with educational
outcomes. The effect of VA has a causal interpretation.

In column (3), we can give the base effects of both PG and
VA" a causal interpretation. However, following the arguments of
Keller (32) and Feigenberg et al. (33), it is still an open question

pnas.org
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Table 2. Gene-environment interaction for reading and numeracy test scores

(M

(2

3)

4

Panel (a): Reading (Grade 9)
PGI*

VA?

PGI™ x vAY

Genetic controls

School quality controls

2-way interactions (PGI, VA?, X)
R2

N

Skill persistence p

Panel (b): Numeracy (Grade 9)
PGI*

VA®

PGI™ x vAY

Genetic controls

School quality controls

2-way interactions (PGI, VA?, X)
R2

N

0.304*** (0.006)
0.091*** (0.014)
-0.020* (0.008)

X
X
X
0.096
30,939

0.314*** (0.006)
0.076*** (0.013)
-0.005 (0.007)

X
X
x
0.102
30,939

0.230*** (0.008)
0.090*** (0.013)
-0.020* (0.008)

X
X
X
0.104
30,939

0.238*** (0.008)
0.075*** (0.013)
-0.006 (0.007)

X
X
X
0.109
30,939

0.231*** (0.005)
0.052*** (0.007)
-0.013* (0.005)
v
v
X
0.654
30,939
0.462*** (0.006)

0.239*** (0.004)
0.039*** (0.005)
-0.000 (0.004)
v
v
X
0.738
30,939
0.702*** (0.004)

0.231*** (0.005)
0.050*** (0.007)
-0.013(0.007)
v
v/

v
0.657
30,939
0.460*** (0.006)

0.239*** (0.004)
0.040*** (0.005)
0.001 (0.005)
v
v
v
0.740
30,939
0.703*** (0.004)

Skill persistence p -

This table shows estimates for the effects of PG/ and VA? on children’s reading scores (Panel [a]) and numeracy scores (Panel [b]) in grade 9, as well as the corresponding gene-environ-
ment interaction. Genetic controls include the PG/ of biological mothers and fathers, and categorical variables for the genotyping batch. School quality controls include lagged grade
8 test scores in reading, numeracy, English, maternal and paternal years of education, second-generation migration status, gender, birth cohort, birth order, number of siblings, and
school-cohort averages of all previous controls. Two-way interactions include all interactions of PG/ and VA? with the aforementioned controls. Skill persistence p indicates the estimate
for lagged test scores in reading/numeracy (grade 8), which is estimated in the model as part of the child controls. SE (in parentheses) are clustered at the school level. Significance levels:
*P <0.05, **P < 0.01, ***P < 0.001. Data: Own calculations based on MoBa and Norwegian registers.

whether we can give the gene—environment interaction a causal
interpretation as well. Since our treatment variables are considered
exogenous conditional on a set of covariates, we need to include
the full set of two-way interactions of these covariates with
the variables of interest (PG, VAd) to ensure that the gene—
environment interaction is not picking up spurious correlations.
Importantly, however, when including these two-way interactions,
the researcher faces a bias—variance tradeoff. On the one hand, the
integration of two-way interactions is necessary for the unbiased
estimation of the gene—environment interaction if these two-
way interactions are correlated with the outcome and the gene—
environment interaction of interest (32, 33). On the other hand,
the two-way interactions may lead to a loss of statistical power
and inflate SE, particularly when degrees of freedom decrease
substantially, R increases minimally, or collinearity exists between
interaction terms (33, 34).

In column (4), we augment our regression model by adding
all two-way interactions of PG and VA? with the vector of
covariates X. If our gene—environment interaction of interest was
confounded by other interactions between our variables of interest
and the controls, we would expect the point estimate of PGIHA
x VA” in column (4) to diverge from the corresponding estimate
in column (3). However, this is not the case. The estimate of the
gene—environment interaction remains stable, but the SE increase
from 0.005 to 0.007. This suggests that the magnitude of the
interaction between the PG and VA? identified in column (3)
is unbiased but becomes nonsignificant in column (4) due to the
increased variance of the estimates. In view of the stability of the
point estimates and in line with the arguments put forward by
Feigenberg et al. (33), we focus on the estimates in column (3) as
our preferred estimates.

PNAS 2025 Vol.122 No.43 2511715122

Our preferred estimate for the gene—environment interaction in
column (3) suggests that a 1 SD increase in PGI* increases the
reading test scores of students in the average school in Norway
by 0.231 SD. For students attending a school 1 SD above the
country average, the impact of a 1 SD increase in PGI™ decreases
by approximately 6% [1-(0.231-0.013)/0.231]. This estimate is
statistically significant at the 5% level.

Theoretically, PGI* and VA? could be complements or substitutes
for student learning. If they were complements, school quality
(VA“) would magnify advantages based on PGI™; if they were
substitutes, VA? would compensate for disadvantages based on
PGI. Our results point to the substitutability of PGI** and VA*
as input factors for students’ reading test scores. Fig. 3 illustrates
genetic gradients across Norwegian schools of varying quality,
revealing whether this substitutability stems from gains at the
bottom or losses at the top of the PGI™ distribution. The genetic
gradients are flatter in higher-quality schools. This pattern suggests
that in higher-quality schools, genetic differences between children
matter less because schools compensate children with lower PGI*,
Reversely, the impact of genetic differences among students on
their test scores is more pronounced in lower-quality schools.
Numeracy. We repeat the previous analysis with numeracy
test scores as the outcome of interest. Fig. 3 and SI Appendix,
Table S1 suggests that there is no gene—environment interaction
for numeracy scores. In our preferred specification, a 1 SD increase
in PGI™ is associated with 0.239 SD higher numeracy scores,
while a 1 SD increase in VA” is associated with 0.039 SD higher
numeracy scores. The point estimate for the gene—environment
interaction is 0.000, with an associated 95% confidence band of
[-0.0078, 0.0078]. Therefore, this null finding is precise enough
to exclude magnitudes that are approximately half the size of
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Fig. 3. Gene-environment interactions for reading and numeracy test scores. This figure shows binned scatter plots for the relationship between PG
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scores in grade 9 by quintile of the outcome-specific VA? distribution. The Top panel shows results for reading test scores; the Bottom panel shows results for
numeracy test scores. Scatter plots are constructed by grouping the PG/ distribution into 15 bins. Regression slopes are estimated on the full data, conditioning
on controls matching the focal models (see column 3, Table 2 for reading and numeracy; Materials and Methods). Data: Own calculations based on MoBa and

Norwegian registers.

the point estimate for the gene—environment interaction in the
reading domain (0.013).

Discussion

Summary. We investigated whether schools can mitigate birth-
related educational inequalities by integrating exogenous school
VA measures with the natural lottery of within-family genetic
variation. Using this stringent causal inference design, we
found compelling evidence of a gene—environment interaction
influencing reading skill development (though not numeracy)
even within the narrow time window of one school year (grade

https://doi.org/10.1073/pnas.2511715122

8, ages 13 to 14). Our results suggest that investments in school
quality can promote equitable skills development by effectively
narrowing gaps in reading test scores between students with
different genetic predispositions. Notably, these findings also
reveal a double disadvantage: The skill development gap between
children in low versus high-quality schools is even larger for those
with less genetic predisposition to education.

Reading versus Numeracy. We estimate that increases in school
quality reduce the impact of PGI* on reading test scores; however,
we do not find a gene—environment interaction for numeracy
test scores. This result is likely related to the higher persistence of
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numeracy skills during this developmental period. Examining our
preferred specification (column 3 of Table 2) gives an indication
of the persistence of skills. In this specification, we control for
subject-specific lagged test scores and list the coefficient of this
control at the bottom of the table (p). If p = 0, past achievement
does not impact current performance, giving room for new inputs
to shape outcomes. Reversely, if p = 1, skills are highly persistent,
suggesting that new inputs have less scope to shape children’s skills.
The corresponding coefficients are 0.462 (SE 0.006) for reading
and 0.702 (SE 0.004) for numeracy test scores. These estimates
suggest that numeracy test scores of adolescents in Norway are
significantly more persistent than reading test scores, giving high-
quality schools less scope to level up the numeracy skills of children

with lower PGI* relative to their high-PGI™ peers.

Magnitude of Effects. We estimate that a 1 SD increase in
school quality reduces the impact of a 1 SD increase of PGI*
on student outcomes in reading by approximately 6%. To gauge
the magnitude of this effect, it is essential to emphasize that this
treatment effect captures students’ exposure to high- or low-quality
schools for only one school year (grade 8). Lower-secondary
education in Norway lasts for 3 y (grades 8-10), with students
usually staying in their initial neighborhood school throughout
this period [see SI Appendix, section A and Kirkebgen (18)].
Therefore, if one were to assume constant and additive treatment
effects of VA? across grades 8-10, a 1 SD increase in school
quality would reduce the impact of PGI™ on student outcomes
in reading by approximately 18% over the total duration of lower
secondary school. We are aware that the assumption of grade-
constant and additive treatment effects is arguably strong and in
need of verification by future research. However, it is interesting
to note that the implied effect size of this back-of-the-envelope
extrapolation is consistent with results from Arold et al. (14), who
find that a 1 SD increase in high school quality in the United
States (grades 9-12) decreases the impact of PGI* on educational
attainment by approximately 19%.

Potential Mechanisms. The gene—environment interaction
identified here can be further understood in the context of
theoretical frameworks from economics and developmental
psychology. The economics literature on skill formation often
conceptualizes student outcomes as a function of students’ initial
skills, school inputs, and family inputs, where families adjust
their behavior depending on students’ initial skills and school
quality (35, 36). Similarly, developmental psychology frameworks
propose that development and learning are a product of dynamic
interplay between individual biopsychological and social processes
(37), where an existing genetic diathesis/vulnerability can be
compensated for, controlled, or triggered by proximal social
processes (38). Our finding that genetic factors matter less in high-
quality schools is consistent with the concept of substitutability
from economics, as well as the compensation and diathesis-stress
models (13, 38, 39) from developmental psychology, contrasting
with bioecological models where social advantage increases genetic
expression (37).

‘The finding that differences in PGI™ have less impact on the
development of reading skills in higher VA? schools could be
explained by both direct and indirect mechanisms. First, students
with lower PGI* may gain directly from attending higher-quality
schools. Emerging evidence shows that schools and teachers in
industrialized countries focus on the lower parts of the achieve-
ment distribution, suggesting that they attach a higher weight to
the learning of disadvantaged students (40). Therefore, students
with lower PGI*! who attend better schools receive relatively more
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and/or higher-quality investments than their peers with higher
PGI™, which could explain the negative gene—environment inter-
action in this study. This mechanism assumes that Norwegian
educators distribute instructional resources unequally across stu-
dents within the same school. However, even without this assump-
tion, the negative gene—environment interaction can be explained
by diminishing returns to educational inputs. Students with lower
PGI* may have more room for improvement and, consequently,
may gain more from attending a better school. Notably, compen-
sation and triggering are at the ends of a continuum: Just as
enriched learning environments may compensate for genetic dis-
advantage, lower-quality schools could be stressful environments
that “trigger” genetic predispositions linked to low educational
attainment and hinder the accumulation of reading skills
Second, students with lower PGI™ may gain indirectly from
attending high-quality schools through family adjustments to
school quality and children’s PGI*. These indirect mechanisms
are more complex as they combine the effects of different inputs
on student learning with the behavioral responses of parents. For
example, if families prioritize supporting children with higher
PGI™ and family and school inputs act as substitutes in fostering
learning, then the effect of additional family inputs received by
high-PGI** students becomes weaker in high-VA schools. This
could contribute to the negative gene—environment interaction
we observed. Alternatively, if families decrease their investment
with increases in school quality, and family inputs and PGI* work
as complements in learning, then the effect of decreased family
inputs received by students in high-VA? schools will be less pro-
nounced for low-PGI* students. This could also contribute to
the negative gene—environment interaction observed in this study.

Limitations. Our gene—environment interaction findings are
specific to genetic variants captured by PGI™, derived from
a genome-wide association study conducted primarily in
populations of European ancestries. This represents only a subset
of total genetic influences on reading ability. Therefore, while we
demonstrate that school quality moderates genetic effects shared
between reading and PGI™, we cannot determine whether all
genetic influences on reading are similarly affected by school
environments. Moreover, the notion that within-family polygenic
index associations can be interpreted causally has been subject
to debate; a key caveat being that within-family associations are
causal for families heterozygous at relevant variants but may not
generalize (41, 42). Additionally, while the standardized outcomes
we analyzed were not skewed, the raw test scores showed negative
skew that may indicate measurement limitations at the upper end
of the scale, and we cannot rule out that this could contribute to
the interaction effects we observe.

Furthermore, we emphasize that our results are context depend-
ent. High-VA schools can increase average student outcomes by
different policies that focus on low-ability students, high-ability
students, or broad policies that are equally effective for all students
regardless of their ability (43, 44). These practices may vary across
countries, grades, subjects, and schools. We find that lower sec-
ondary schools in Norway with high-VA” increase the readin
scores of all students, but with higher relative gains of low—PG['E§

“Theoretically, the existence of this effect is ambiguous. Extensive literature has emphasized
the importance of dynamic complementarities in skill formation, which suggests higher
gains by students with higher initial skills (55). However, consistent with our results, various
recent papers have suggested that higher quality schools have more positive effects on
students from disadvantaged socioeconomic backgrounds and who have higher genetic
predisposition to ADHD and low educational attainment (13, 14, 16). Other studies have
obtained inconclusive or null findings (11, 12). Some of these inconsistencies could be
explained by differences in outcome selectivity (i.e., national tests versus degree comple-
tion) and/or differences across institutional contexts (56).
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students (Fig. 3). The resulting negative interaction of PG and
VA" may be attenuated or even reversed in contexts where schools
put a stronger emphasis on the learning of high-ability students.
Such differences may even emerge within the same country, for
example, if a school system’s goals shift from equalizing students’
opportunities in lower grades to differentiating students at higher
grades. Therefore, we encourage caution when extrapolating our
results to other contexts.

Future Research. This study forges several interesting avenues
for future research. Ideally, investigations aiming to distinguish
between different mechanisms involved in the gene—environment
interaction that we identified should combine the data prerequisites
for causal gene—environment interplay studies with detailed data
on school practices and parental inputs. The former will allow
us to understand the characteristics of high-quality schools and
to study which features of these schools make them particularly
beneficial to students with lower PGI (see also our discussion
on direct gene—environment effects). The latter will allow us
to understand how mothers and fathers adapt their parenting
strategies in response to their children’s PGI** and the quality of
their schools, and whether particular parental inputs are especially
beneficial to students with lower PGF (see also our discussion
on indirect gene—environment effects).

The relevant school characteristics and parental inputs are highly
multifaceted and are unlikely to be captured in a single dataset. School
quality is likely to consist of diverse pedagogical, organizational, cul-
tural, relational, financial, and physical aspects. Similarly, parental
inputs may consist of different time and monetary investments as
well as parenting styles. However, the increased availability of molec-
ular genetic data and the integration of these data with linked register,
survey, and cohort study datasets paves the way for researchers to
address these important questions convincingly in the future.

Materials and Methods

Data.

The Norwegian Mother, Father, and Child Cohort Study (MoBa). MoBa is a pro-
spective population-based pregnancy cohort study conducted by the Norwegian
Institute of Public Health (19). Pregnant women were recruited from across Norway
from 1999 to 2009. The women consented to initial participation in 41% of the
pregnancies. Of the fathers invited to participate, 83% consented. The total cohort
includes approximately 114,500 children, 95,200 mothers, and 75,200 fathers.
MoBa participants were linked to administrative register data through the Norwegian
national ID number system. Analyses are conducted on MoBa children born 2002-
2008 with grade 9 national test scores in reading and numeracy, complete data for
genome-wide genotyping [see S/ Appendix, section C and Corfield et al. (45) for
details on genotyping and genetic quality control in MoBa], information on VA? in
their school-cohort cell, and nonmissing control variables (N = 30,939).
Norwegian register data. We estimate VA for standardized test scores in reading
and numeracy in grade 8. Since standardized tests are conducted at the beginning
of the academic year, we can use test scores in grades 8 and 9 to measure student
progress in grade 8, i.e., the first year of lower secondary school (S/ Appendix,
sections A and B). We construct VA” using register data on the entire Norwegian
student population in birth cohorts 1997-2007 (approximately 60,000 per cohort).
The earliest birth cohort that completed comparable standardized tests in grades 8
and 9in reading and numeracy is 1997. While 2007 was the latest complete birth
cohortavailable during data construction, asmall number of children born in 2008
(n=13)also metallinclusion criteria and were included in the analytical sample.

Treatment Variables.

Polygenic index for educational attainment (PGI*). We used beta weights from
the largest genome-wide association study of educational attainment to date
("EA4"), excluding MoBa (46). Polygenic indices were calculated using LDPred
v.1(47), a Bayesian approach that uses a prior on the expected polygenicity of
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a trait (assumed fraction of nonzero effect markers) and adjusts for linkage dis-
equilibrium (LD) based on a reference panel to compute weights for individual
single nucleotide polymorphisms (SNPs). LD adjustment was performed using the
MoBa genotype data as LD reference panel. The weights were estimated based on
the heritability explained by the markers in the GWA summary statistics and the
assumed fraction of markers with nonzero effects. PG/ were computed based
on these weights with the -score command in plink2 (48).
School value-added (VA°). Consider educational outcome Y in subject d of stu-
dent i attending school j in cohort c. We model this educational outcome as a
function of individual student characteristics Zand true school quality VA®

Ve = 7, + VA, + € (1

ijc ijc ijc’

In our setting, Z comprises lagged grade 8 test scores in numeracy, reading,
English, maternal and paternal years of education, second-generation migra-
tion status, gender, birth cohort, birth order, number of siblings, and school-
cohort averages of all previous controls. See also S/ Appendix, Table S1 where
we provide an overview of all control variables used for the estimation of VA’
and in our main analysis. Note that the specification of Z goes beyond lagged
test scores in the outcome of interest by controlling for lagged test scores in
three subjects, as well as the corresponding aggregates at the school-cohort
level. This practice is motivated by methodological research showing the neces-
sity of additional measures of prior achievement for unbiased VA estimates
(49, 50).These papers also suggest that additional controls for socioeconomic
background are usually unnecessary after accounting for such a rich set of
controls for prior achievement. We nevertheless include these controls in Z to
err on the side of caution.

Note that true VA” is a latent variable captured in the composite error term

ng = VA}?‘L + e;]’.fof Eq.1.We can construct an estimate of VA’ of school jin cohort
¢ by estimating Eq. 1 and calculating the cohort-school average in the resulting
residuals:

== 3, (ut) 2
jc

where Nj‘z captures the number of students of cohort cin school .

We want to use estimates of VA in regression models to explain student
outcomes. However, we cannot explain student outcomes of school j in cohort
¢ using VA’ estimates for the same school cohort because of the mechanical
relationship between the dependent variable ¥ and the VA? estimate (Eq. 1).
For example, a student with a high reading test score will simultaneously push
up the corresponding estimate of VA? in their school-cohort cell. This mechani-
cal link is particularly pronounced if school-cohort cells are small. To break this
mechanical relationship, we predict school quality in school j of cohort cfrom all
neighboring cohorts using an empirical Bayes procedure [see Walters (51) for a
recent overview article]:

J_ d (o
%C_ Z15c’5(,‘, c'#c Cff/ <VAff/)' [3]

where ¢ are weights selected to minimize forecast errors. Similar to Chetty et al.
(26), we use all neighboring cohorts and not just preceding cohorts to increase
the precision of the estimates. Therefore, our final estimate of VA? is the best
linear predictor of school quality for cohort ¢ in school j from all preceding and
subsequent cohorts who attended this school while excluding the cohort itself to
avoid biased estimates through reversed causality. This procedure yields a noisy
estimate of VA’ Furthermore, it is well known that measurement error in the
independent variables leads to attenuation bias in the relevant coefficients in
downstream analyses. The empirical Bayes procedure takes care of this concern.
Specifically, it chooses weights ¢ such that noisy estimates are shrunk to the mean
in proportion to their signal-to-noise ratio. It can be shown analytically that this
weighting is the exact inverse of attenuation bias in error-in-variables regres-
sions—see Walters (51) for an outline of the formal argument. Therefore, while
we estimate VA? with error, our regressions recover estimates of school effects
thatare not afflicted by attenuation bias. We note that this conclusion only holds
when standardizing VA? with respectto its true SD, which is unobserved. Therefore,
we estimate the true SD by the square root of the 1-y lag autocovariance, which
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provides a lower bound on the true within-year SD of VA9 (26, 52). We use this
estimate for all standardizations of VA”. In SI Appendix, Tables 52 and S3, we
also present robustness analyses based on the observed SD, which provide an
overestimate of the true within-year D of VA“.

In all our analyses, we use VA’ from Eq. 3 as our estimate of VA’. However,
to simplify the notation, we omit the overbar and refer to this estimate as VA
in the following. We estimate 1A using the vam command (53) in Stata 18.0.

The outlined procedure yields an unbiased estimate of VA if there is no selec-
tion into schools based on factors not captured in observable characteristics Z.
Following Chetty et al. (26), we can evaluate the plausibility of the exogeneity
assumption using "as-if-unobservable” variables. Specifically, we treat students’
grade 5 reading and numeracy scores, fathers’ and mothers' earnings rank at age
6, and fathers' and mothers' age at birth as unobserved variables that we do not
include in the control vector Z. In turn, we can test whether they confound the
relationship between VA” and student outcomes.

The validation exercise consists of three steps and is performed in Stata 18.0
using the regress command. First, we separately regress each of our outcomes
of interest and the as-if-unobservables on Z and store the residuals. This step
ensures that we only exploit variation that is not captured by Z. Second, we
regress each (residualized) outcome on all (residualized) “as-if-unobservables”
and store the predicted outcomes. This step creates a summary statistic for
variation in the (residualized) outcomes that is accounted for by our (residu-
alized) "as-if-unobservables.” It captures variation in the outcomes of interest
that is not accounted for by Z and which, therefore, is a potential source for
omitted variable bias. Finally, we regress this summary statistic on VA?. If VA’
is substantially associated with the predicted outcomes, then this indicates
that there is selection into schools based on "as-if-unobservables” (i.e., grade
5 test scores, parental earnings rank, and parental age at birth). The results are
shown in Fig. 2.

While the results of this validation exercise support the satisfaction of the
“selection-on-observables” assumption in our setting, we acknowledge that there
remains the risk of confounding through some other unobservable variable that
is correlated with student outcomes and school quality but not captured in Z.
However, existing methodological literature generally shows that observational
VA measures like the ones used in this paper by-and-large concur with VA meas-
ures using (quasi)-experimental variation once they account for lagged student
testscores in Z(17,18).f

VA can be interpreted as a summary statistic for all school factors contributing
to students' academic progress in skill dimension d. While VA? captures persistent
differences in quality across schools, it does not capture within-school differences
in quality due to, for instance, teacher quality.

Analysis. We estimate the following model through ordinary least-squares and
cluster SE at the level of schools j, using Im_robust in the estimatr R package (R
version 4.2):
d _ dprffA 4 pdyad 4 d (prEA dy ., <d d

Ve = a®PGIY + pIVAT + k¥ (PG X VAY) + 67X, + €l [4]
PGI™ and VA? are the variables of interest, X is a vector of control variables,
and e is the error term. o, p?, and k” are the parameters of interest, identify-
ing the causal effects of PGI”, VA?, and the corresponding gene-environment
interaction.

our discussion focuses on the “selection-on-observables” assumption as the key identifying
assumption. Reardon and Raudenbush (57) discuss a set of additional identifying assump-
tions, including i) manipulability; i) no interference between units; iii) interval scale metric;
iv) homogeneity of effects; and v) functional form. Their simulations show that especially
departures from iv) may affect VA estimates. The relaxation of iv), however, brings its own
econometric challenges in the form of contamination biases (58). Against this backdrop,
Angrist et al. (17) highlight the need for further methodological research to address this
concern in the future.
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Controls X include genetic controls, i.e., paternal and maternal PGI#, and

genotyping batch, and the vector of covariates Z used for the construction of
VA", ie.,lagged grade 8 test scores in reading, numeracy, English, maternal and
paternal years of education, second generation migration status, gender, birth
cohort, birth order, number of siblings, and school-cohort averages of all previous
controls (S/ Appendix, Table S1). Note that lagged test scores are a function of
PGI?. Therefore, they are “bad controls” for estimating genetic effects (34). To
address this concern, we regress grade 8 test scores in reading, numeracy, and
English on PG/ and include the residuals from these regressions as our controls
for lagged test scores. Hence, we control for all variations in lagged test scores
uncorrelated with our variable of interest (PGI?).
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